
























































































































































































































































































































































































































































































































































































































































































































































































r 

EFL 

long complex A long complex quantity is an approximation to 
a complex number, and is represented as a pair 
of long reals. 

character(n) A character quantity is a fixed-length string of 
n characters. 

5.2 Constants 

There is a notation for a constant of each basic type. 

A logical may take on the two values 

true 
false 

An integer or field constant is a fixed point constant, optionally 
preceded by a plus or minus sign, as in 

:---· 17 
-94 
+6 
0 

A long real {"double precision") constant is a floating point 
constant containing an exponent field that begins with the letter 
d. A real ("single precision") constant is any other floating 
point constant. A real or long real constant may be preceded 
by a plus or minus sign. The following are valid real constants: 

17.3 
-.4 
7.9e-6 ( 
14e9 ( 

7.9 x w-6) 
1.4 x lQIO) 

(_... The following are valid long real constants 

7.9d-6 ( 7.9 X JQ-6) 
5d3 
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A character constant is a quoted string. 

5.3 Variables 

A variable is a quantity with a name and a location. At any 
particular time the variable may also have a value. A variable 
is said to be undefined before it is initialized or assigned its first 
value. 

Each variable has certain attributes: 

1. Storage Class 

2. Scope 

3. Precision 

5.3.1 Storage Class 

A variable's storage class is the association of its name and its 
location. A storage class can either be transitory or permanent. 

• Transitory association is achieved when arguments 
are passed to procedures. 

• Other associations are considered permanent or 
static. 

5.3.2 Scope of Names 

The scope of a variable may be either global or local. 

1. The names of common areas are global, and global vari­
ables may be used anywhere in the program. 

2. All other names are considered local to the block in which 
they are declared. 

5.3.3 Precision 

Floating point variables are either of normal or long precision. 
Normal precision is 32 bits; long precision is 64 bits. This attri­
bute may be stated independently of the basic type. 
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5.4 Arrays 

It is possible to declare rectangular arrays (of any dimension) of 
values of the same type. The index set is always a cross­
product of intervals of integers. The tower and upper bounds 
of the intervals must be constants for arrays that are local or 
common. A formal argument array may have intervals that are 
of length equal to one of the other formal arguments. An ele­
ment of an array is denoted by the array name followed by a 
parenthesized comma-separated list of integer values, each of 
which must lie within the corresponding interval. The intervals 
may include negative numbers. Entire arrays may be passed as 
procedure arguments or in input/output lists, or they may be 
initialized; all other array references must be to individual ele­
ments. 

S.S Structures 

It is possible to define new types which are made up of ele· 
ments of other types. The compound object is known as a 
structure; its constituents are called members of the structure. 
The structure may be given a name, which acts as a type name 
in the remaining statements within the scope of its declaration. 
The elements of a structure may be of any type (including pre­
viously defined structures), or they may be arrays of such 
objects. Entire structures may be passed to procedures or be 
used in input/output lists; individual elements of structures 
may be referenced. The uses of structures will be detailed 
below. The following structure might represent a symbol table: 

struct tableentry 
[ 

character(8) name 
integer hashvalue 
integer numberofelements 
field(O:l) initialized, used, set 
field(O:IO) type 
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6. Expressions 

Expressions are syntactic forms that yield a value. An expres­
sion may have any of the following forms, recursively applied: 

primary 
( expression ) 
unary-operator expression 
expression binary-operator expression 

In the following table of operators, all operators on a line have 
equal precedence and have higher precedence than operators on 
later lines. The meanings of these operators are described in 
the sections "Unary Operators" and "Binary Operators." 

-> .. 
• I unary+ ++ 
+ 
< <~ > >= 

" "" I II 
$ - +-

Examples of expressions are 

a<b && b<c 
-(a + sin(x)) I {5+cos(x)) .. 2 

6.1 Primaries 

&- 1- &&- 11-

Primaries are the basic elements of expressions. They include 
constants, variables, array elements, structure members, pro­
cedure invocations, inpuVoutput expressions, coercions, and 
sizes. 

6.1.1 Constants 
Constants are described in the section "Constants" under 
"Data Types and Variables." 
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6.1.2 Variables 

Scalar variable names are primaries. They may appear on the 
left or the right side of an assignment. Unqualified names of 
aggregates (structures or arrays) may appear only as procedure 
arguments and in input/output lists. 

6.1.3 Array Elements 

An element of an array is denoted by the array name followed 
by a parenthesized list of subscripts, one integer value for each 
declared dimension: 

a(S) 
b(6, -3,4) 

6.1.4 Structure Members 

A structure name followed by a dot followed by the name of a 
member of that structure constitutes a reference to that ele­
ment. If that element is itself a structure, the reference may be 
further qualified. 

a.b 
x0).y(4).z(5) 

6.1.5 Procedure Invocations 

A procedure is invoked by an expression of one of the forms 

procedurename ( ) 
procedurename ( expression) 
procedurename ( expression-], ... , expression-n) 

The procedurename is either the name of a variable declared 
external or it is the name of a function known to the EFL 
compiler (see "Known Functions" under "Procedures"), or it 
is the actual name of a procedure, as it appears in a procedure 
statement. If a procedurename is declared external and is an 
argument of the current procedure, it is associated with the pro­
cedure name passed as actual argument; otherwise it is the 
actual name of a procedure. Each expression in the above is 
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called an actual argument. Examples of procedure invocations 
are 

f(x) 

workO 
g(x, y+3, 'xx') 

When one of these procedure invocations is to be performed, 
each of the actual argument expressions is first evaluated. The 
types, precisions, and bounds of actual and formal arguments 
should agree. If an actual argument is a variable name, array 
element, or structure member, the called procedure is permit· 
ted to use the corresponding formal argument as the left side of 
an assignment or in an input list~ otherwise it may only use the 
value. After the formal and actual arguments are associated, 
control is passed to the first executable statement of the pro­
cedure. When a return statement is executed in that pro­
cedure, or when control reaches the end statement of that pro· 
cedure, the function value is made available as the value of the 
procedure invocation. The type of the value is determined by 
the attributes of the procedurename that are declared or implied 
in the calling procedure, which must agree with the attributes 
declared for the function in its procedure. In the special case of 
a generic function, the type of the result is also affected by the 
type of the argument. See "Procedures." 

6.1.6 Input/Output Expressions 

The EFL input/output syntactic forms may be used as integer 
primaries that have a non-zero value if an error occurs during 
the input or output. 

6.1. 7 Coercions 

An expression of one precision or type may be coerced, that is, 
converted to another by an expression of the form 

attributes ( expression ) 

At present, the only attributes permitted are precision and basic 
types. Attributes are separated by white space. 
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An arithmetic value of one type may be coerced to any other 
arithmetic type. A character expression of one length may be 
coerced to a character expression of another length. Logical 
expressions may NOT be coerced to a nonlogical type. 

As a special case, a quantity of complex or long complex type 
may be constructed from two integer or real quantities by pass­
ing two expressions (separated by a comma) in the coercion. 
Examples and equivalent values are 

integer(5.3) - 5 
long reai(S) - 5.0d0 
complex(5,3) ""' 5+3i 

Most conversions are done implicitly, since most binary opera­
tors permit operands of different arithmetic types. Explicit 
coercions are of most use when it is necessary to convert the 
type of an actual argument to match that of the corresponding 

( formal parameter in a procedure calL 

r 

6.1.8 Sizes 

There is a notation which yields the amount of memory 
required to store a datum or an item of specified type: 

sizeof ( lejiside ) 
slzeof ( attributes ) 

In the first case, te.liside can denote a variable, array, array ele­
ment, or structure member. The value of sizeof is an integer, 
which gives the size in arbitrary units. If the size is needed in 
terms of the size of some specific unit, this can be computed by 
division: 

sizeof(x) I sizeof(integer) 

yields the size of the variable x in integer words. 
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The distance between consecutive elements of an array may not 
equal sizeof because certain data types require final padding on 
some machines. The lengthof operator gives this larger value, 
again in arbitrary units. The syntax is 

lengthof ( te.tiside ) 
lengthof ( auributes ) 

6.2 Parentheses 

An expression surrounded by parentheses is itself an expres· 
sian. A parenthesized expression must be evaluated before an 
expression of which it is a part is evaluated. 

6.3 Unary Operators 

All of the unary operators in EFL are prefix operators. The 
result of a unary operator has the same type as its operand. 

6.4 Arithmetic 

Unary + has no effect. A unary - yields the negative of its 
operand. 

The prefix operator + + adds one to its operand. The prefix 
operator -- subtracts one from its operand. The value of 
either expression is the result of the addition or subtraction. 
For these two operators, the operand must be a scalar, array 
element, or structure member of arithmetic type. As a side 
effect, the operand value is changed. 

6.4.1 Logical 

The only logical unary operator is complement (~). This opera· 
tor is defined by the equations 

11-18 

true = false 
- false = true 



r 

r 

EFL 

6.5 Binary Operators 

Most EFL operators have two operands, separated by the opera­
tor. Because the character set must be limited, some of the 
operators are denoted by strings of two or three special charac­
ters. All binary operators except exponentiation are left associ­
ative. 

6.5.1 Arithmetic 

The binary arithmetic operators are 

+ addition 
subtraction 

• multiplication 
I division .. exponentiation 

Exponentiation is right associative: a••b ... c - a••(b•*c) 
a(II-"J, The operations have the conventional meanings: 

8 + 2 - 10, 
8 - 2 - 6, 
8• 2 - 16, 
8/2 - 4, 
8 •• 2 = 82 = 64. 

The type of the result of a binary operation A op B is deter­
mined by the types of its operands: 

Type of B 

Type of A i r I r c I c 

I i r I r c I c 
r r r I r c I c 

1 r I r I r I r I c I c 
c c c lc c I c 

1c lc I c I c I c I c 
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i = integer 
lr=long 

r = real 
real lc= 

c - complex 
long complex 

If the type of an operand differs from the type of the result, the 
calculation is done as if the operand were first coerced to the 
type of the result. If both operands are integers, the result is of 
type integer, and is computed exactly. (Quotients are truncated 
toward zero, so 8/3 = 2.) 

6.5.2 Logical 

The two binary logical operations in EFL, and and or, are 
defined by the truth tables: 

A B A andB A or 8 
false false false false 
false true false true 
true false false true 
true true true true 

Each of these operators comes in two forms. In one form, the 
order of evaluation is specified. The expression 

a && b 

is evaluated by first evaluating a; if it is false then the expres· 
sian is false and b is not evaluated; otherwise, the expression 
has the value of b. The expression 

a II b 

is evaluated by first evaluating a; if it is true then the expres­
sion is true and b is not evaluated; otherwise, the expression 
has the value of b. The other forms of the operators (&: for 
and and I for or) do not imply an order of evaluation. With the 
latter operators, the compiler may speed up the code by 
evaluating the operands in any order. 
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6.6 Relational Operators 

There are six relations between arithmetic quantities. These 
operators are not associative. 

EFL Operator Meaning 

< < less than 
<- " less than or equal to -- ~ equal to 
-- "' not equal to 
> > greater than 
>~ ;. greater than or equal 

Since the complex numbers are not ordered, the only relational 
operators that may take complex operands are-- and-=. The 
character collating sequence is not defined. 

6. 7 Assignment Operators 

All of the assignment operators are right associative. The sim­
ple form of assignment is 

basic-/eft-side = expression 

A basic-/eft-side is a scalar variable name, array element, or 
structure member of basic type. This statement computes the 
expression on the right side, and stores that value {possibly 
after coercing the value to the type of the left side) in the loca­
tion named by the left side. The value of the assignment 
expression is the value assigned to the left side after coercion. 

There is also an assignment operator corresponding to each 
binary arithmetic and logical operator. In each case, a op - b 
is equivalent to a = a op b. (The operator and equal sign must 
not be separated by blanks.) Thus, n+=2 adds 2 ton. The 
location of the left side is evaluated only once. 
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6.8 Dynamic Structures 

EFL does not have an address (pointer, reference) type. How­
ever, there is a notation for dynamic structures, 

lejlside - > srructurename 

This expression is a structure with the shape implied by struc­
turename but starting at the location of /ejiside. In effect, this 
overlays the structure template at the specified location. The 
fejfside must be a variable, array, array element, or structure 
member. The type of the leftside must be one of the types in 
the structure declaration. An element of such a structure is 
denoted in the usual way using the dot operator. Thus, 

place( i) - > st.nth 

refers to the nth member of the st structure starting at the i-th 
element of the array place. 

6.9 Repetition Operator 

Inside of a list, an element of the form 

integer·constant·expression $ constant·expression 

is equivalent to the appearance of the expression a number of 
times equal to the first expression. Thus, 

(3, 3$4, 5) 

is equivalent to 

(3, 4, 4, 4, 5) 

6.10 Constant Expressions 

If an expression is built up out of operators (other than funcM 
tions) and constants, the value of the expression is a constant, 
and may be used anywhere a constant is required. 
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7. Declarations 

Declarations statement describe the meaning, shape, and size of 
named objects in the EFL language. 

7.1 Syntax 

A declaration statement is made up of attributes and variables. 
Declaration statements are of two forms: 

attributes variabfe·list 
attributes { declarations } 

In the first case, each name in the variable-list has the specified 
attributes. In the second, each name in the declarations also 
has the specified attributes. A variable name may appear in 
more than one variable list, so long as the attributes are not 
contradictory. Each name of a nonargument variable may be 
accompanied by an initial value specification. The declarations 
inside the braces are one or more declaration statements. 
Examples of declarations are 

integer k=2 

long real b(7 ,3) 

common(cname) 
{ 
integer i 
long real array(5,0:3) x, y 
character(7) ch 
} 

7.2 Attributes 

7.2.1 Basic Types 

The following are basic types in declarations 
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logical 
integer 
fleld(m:n) 
character(k) 
real 
complex 

In the above, the quantities k, m, and n denote integer constant 
expressions with the properties k > 0 and n > m. 

7 .2.2 Arrays 

The dimensionality may be declared by an array attribute 

Each of the b; may either be a single integer expression or a 
pair of integer expressions separated by a colon. The pair of 
expressions form a lower and an upper bound; the single 
expression is an upper bound with an implied lower bound of 1. 
The number of dimensions is equal to n, the number of 
bounds. All of the integer expressions must be constants. An 
exception is permitted only if all of the variables associated with 
an array declarator are formal arguments of the procedure; in 
this case, each bound must have the property that upper -
lower + I is equal to a formal argument of the procedure. 
{The compiler has limited ability to simplify expressions, but it 
will recognize important cases such as (O:n -1).) The upper 
bound for the last dimension {b,1 ) may be marked by an aster· 
isk ( "' ) if the size of the array is not known. The following 
are legal array attributes: 
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7 .2.3 Structures 

A structure declaration is of the form 

struct structname { declaration statements } 

The structname is optional; if it is present, it acts as if it were 
the name of a type in the rest of its scope. Each name that 
appears inside the declarations is a member of the structure, and 
has a special meaning when used to qualify any variable 
declared with the structure type. A name may appear as a 
member of any number of structures, and may also be the 
name of an ordinary variable, since a structure member name is 
used only in contexts where the parent type is known. The fol­
lowing are valid structure attributes 

struct xx 
{ 
integer a, b 
real x(S) 
I 

struct { xx z(J); character(S) y } 

The last line defines a structure containing an array of three xxs 
and a character string. 

7 .2.4 Precision 

Variables of floating point (real or complex) type may be 
declared to be long to ensure they have higher precision than 
ordinary floating point variables. The default precision is short. 

7 .2.5 Common 

Certain objects called common areas have external scope, and 
may be referenced by any procedure that has a declaration for 

( the name using a 

common ( commonareaname ) 
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attribute. All of the variables declared with a particular com­
mon attribute are in the same block; the order in which they 
are declared is significant. Declarations for the same block in 
differing procedures must have the variables in the same order -/ 
and with the same types, precision, and shapes, though not 
necessarily with the same names. 

7 .2.6 External 

If a name is used as the procedure name in a procedure invoca­
tion, it is implicitly declared to have the external attribute. If a 
procedure name is to be passed as an argument, it is necessary 
to declare it in a statement of the form 

external I name D 

If a name has the external attribute and it is a formal argument 
of the procedure, then it is associated with a procedure 
identifier passed as an actual argument at each call. If the name 
is not a formal argument, then that name is the actual name of 
a procedure, as it appears in the corresponding procedure state­
ment. 

7.3 Variable List 

The elements of a variable list in a declaration consist of a 
name, an optional dimension specification, and an optional ini­
tial value specification. The name follows the usual rules. The 
dimension specification is the same form and meaning as the 
parenthesized Jist in an array attribute. The initial value 
specification is an equal sign ( =) followed by a constant 
expression. If the name is an array, the right side of the equal 
sign may be a parenthesized list of constant expressions, or 
repeated elements or lists; the total number of elements in the 
list must not exceed the number of elements of the array, 
which are filled in column-major order. 

7.4 The Initial Statement 

An initial value may also be specified for a simple variable, 
array, array element, or member of a structure using a 
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The var may be a variable name, array element specification, or 
member of structure. The right side follows the same rules as 
for an initial value specification in other declaration statements. 

8. Executable Statements 

Every useful EFL program contains executable statements, oth­
erwise it would not do anything and would not need to be run. 
Statements are frequently made up of other statements. Blocks 
are the most obvious case, but many other forms contain state­
ments as constituents. 

To increase the legibility of EFL programs, some of the state­
ment forms can be broken without an explicit continuation. A 
square (o) in the syntax represents a point where the end of a 
line will be ignored. 

8.1 Expression Statements 

8.1.1 Subroutine Call 

A procedure invocation that returns no value is known as a 
subroutine call. Such an invocation is a statement. Examples 
are 

work(in, out) 
run() 

Input/output statements (see "Input/Output Statements" 
under "Executable Statements") resemble procedure invoca­
tions but do not yield a value. If an error occurs the program 

,! stops. 
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8.1.2 Assignment Statements 

An expression that is a simple assignment(=) or a compound 
assignment ( + = etc.) is a statement: 

a = b 
a = sin(x)/6 
X *= y 

8.2 Blocks 

A block is a compound statement that acts as a single state­
ment. A block begins with a left brace, optionally followed by 
declarations, optionally followed by executable statements, fol­
lowed by a right brace. A block may be used anywhere a state­
ment is permitted. A block is not an expression and does not 
have a value. An example of a block is 

integer i # this variable is unknown 
# outside the braces 

big - 0 
do i = l,n 

if(big < a (i) J 
big = a(i) 

8.3 Test Statements 

A test statemellf permits execution of another statement or 
group of statements based on the outcome of a conditional 
expression. 

There are several forms of test statements: 

1. if statements 

2. if-else statements 

3. select statements 
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8.3.1 If Statement 

( The simplest of the test statements is the if statement, of form 

if ( logical·expression ) 0 statement 

First, the logical expression is evaluated; if it is true, then the 
statement is executed. Otherwise statement will be skipped. 

8.3.2 If-Else 

A more general statement is of the form 

if ( logicaf·expression ) 0 statement-! D 
else 0 statement-] 

Just as with the "if" statement, the logical expression is 
evaluated and if the expression is true then statement-! is exe­
cuted, otherwise, statement-2 is executed. Either of the conse­
quent statements may itself be an if-else so a completely nested 
test sequence is possible: 

lf(x<y) 
if(a<b) 

k - I 
else 

k - 2 
else 

if(a<b) 
m I 

else 
m 2 

An else applies to the nearest preceding if which is not already 
followed by an else. 

( A more common use of the ~·it-else" test statement is the 
sequential test: 
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if(x==l) 
k ~ I 

else if(x- = 3 
k - 2 

else 
k - 3 

x==S) 

There may be any number of else if statements in an "if-else" 
statement to test for several conditions, although if more than 
2 else lfs are needed, a select statement is often used instead. 

8.3.3 Select Statement 

Much like the switch statement in the C shell or case state­
ments in many programming languages, a select statement is 
used to direct the branching of a program based on the result of 
a conditional or arithmetic expression. A select statement has 
the general form: 

select( expression ) 0 block 

Inside the block two special types of labels are recognized. A 
prefix of the form 

case I constant I : 

marks the statement to which control is passed if the expression 
in the select has a value equal to one of the case constants. If 
the expression equals none of these constants, but there is a 
label default inside the select, a branch is taken to that point; 
otherwise the statement following the right brace is executed. 

Once execution begins at a case or default label, it continues 
until the next case or default is encountered. 
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select( x) 
{ 
case 1: 

k - 1 
case 3,5: 

k ~ 2 
default: 

k ~ 3 

8.4 Loops 

EFL 

The loop constructs, (while, for, repeat, repeat-until and do), 
provide an efficient way to repeat an operation or series of 
operations. Termination of a loop is generally initiated by the 
failure of a logical or iterative test statement. Although the 
while loop is the simplest construct, and consequently the most 
frequently used, each construct has its own strengths to be 
exploited in a given application. 

8.4.1 While Statement 

This construct has the form 

while ( logicaf·expression ) D statement 

First, the logical-expression is evaluated; if it is true, statement is 
executed, and the logical-expression is evaluated again. If 
logical-expression is false, statement is not executed and program 
execution continues at the next statement. 

8.4.2 For Statement 

The for statement is a more elaborate looping construct. It has 
the form 

for ( initial-statement , 0 fogical-rxpression , 
D iteration-statement ) D body-statement 

Except for the behavior of the next statement (see "Branch 
Statement" under "Executable Statements"), this construct is 
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equivalent to 

initia f. statement 
while ( loxica/-expression ) 

I 
bod_v-statement 
it era t ion-statement 
} 

This form is useful for general arithmetic iterations, and for 
various pointer-type operations. The sum of the integers from 
I to 100 can be computed by the fragment 

II = () 
for(i = /, i < = 100, i += I) 

fl + = i 

Alternatively, the computation could be done by the single 
statement 

for({n=O; i=l}, i< =100, (n+=i; ++i)) 

Note that the body of the for loop is a null statement in this 
case. An example of following a linked list will be given later. 

8.4.3 Repeat Statement 

The statement 

repeat 0 statemenl 

executes the statement, then does it again, without any termi­
nation test. Obviously, a test inside the statement is needed to 
stop the loop. 

8.4.4 Repeat .•• Until Statement 

The while loop performs a test before each iteration. The 
statement 
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repeat D statement D until ( logical·expression ) 

executes the statement, then evaluates the logical expression; if 
the loKical expression is true the loop is complete; otherwise, 
control returns to the statement. Thus, the body is always exe­
cuted at least once. The until refers to the nearest preceding 
repeat that has not been paired with an until. In practice, this 
appears to be the least frequently used looping construct. 

8.4.5 Do Loop 

The simple arithmetic progression is a very common one in 
numerical applications. EFL has a special loop form for ranging 
over an ascending arithmetic sequence 

do variable = expression-/, expression-], expression-3 
statement 

The variable is first given the value expression-/. The statement 
is executed, then expression-] is added to the variable. The 
loop is repeated until the variable exceeds expression-]. If 
expression-] and the preceding comma are omitted, the incre­
ment is taken to be I. The loop above is equivalent to 

t2 = expression-] 
t3 = expression-] 
for{ variable =expression-/, variable< =t2, variable+ =r]) 

statemenl 

(The compiler translates EFL do statements into FORTRAN 
DO statements, which are usually compiled into excellent 
code.) The do variable may not be changed inside of the loop, 
and expression-/ must not exceed expression-]. The sum of the 
first hundred positive integers could be computed by 

II = 0 
.r__. do i = 1, 100 

II += i 
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8.5 Branch Statements 

It is not considered good programming practice to use branch 
statements if a loop construct can be used instead. However, if 
you must use a branch statement, EFL provides a few for your 
convenience. 

8.5.1 Goto Statement 

The most general, and most dangerous, branching statement is 
the simple unconditional 

goto label 

After executing this statement, the next statement performed is 
the one following the given label. Inside of a select the case 
labels of that block may be used as labels, as in the following 
example: 

select(k) 

case I: 
error(7) 

case 2: 
k - 2 
go to case 4 

case 3: 
k - 5 
goto case 4 

case 4: 
fixup(k) 
goto default 

default: 
prmsg("ouch") 

If two select statements are nested, the case labels of the outer 
select are NOT accessible from the inner one. 
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8.5.2 Break Statement 

A safer statement is one which transfers control to the state· 
ment following the current select or loop form. A statement of 
this sort is almost always needed in a repeat loop: 

repeat 
{ 
do a computation 
if( finished) 
break 
I 

More general forms permit controlling a branch out of more 
than one construct. For example: 

break 3 

transfers control to the statement following the third loop 
and/ or select surrounding the statement. 

It is possible to specify the type of construct to which control is 
to be transferred, i.e. for, while, repeat, do, or select. For 
example: 

break while 

breaks out of the first surrounding while statement. Either of 
the statements 

break 3 for 
break for 3 

will transfer to the statement after the third enclosing for loop. 

8.5.3 Next Statement 

The next statement causes the first surrounding loop statement 
to go on to the next iteration: the next operation performed is 
the test of a while, the iteration-statement of a for, the body of a 

11-35 



EFL 

repeat, the test of a repeat ... until, or the increment of a do. 
Elaborations similar to those for break are available: 

next 
next 3 
next 3 for 
next for 3 

A next statement ignores select statements. 

8.5.4 Return 

The last statement of a procedure is followed by a return of 
control to the caller. If it is desired to effect such a return from 
any other point in the procedure, a 

return 

statement may be executed. Inside a function procedure, the 
function value is specified as an argument of the statement: 

return ( expression ) 

8.6 Input/Output Statements 

EFL has two input statements (read and readbin), two output 
statements (write and writebin), and three control statements 
(endfile, rewind, and backspace). These forms may be used 
either as a primary with a integer value or as a statement. If an 
exception occurs when one of these forms is used as a state­
ment, the result is undefined but will probably be treated as a 
fatal error. If they are used in a context where they return a 
value, they return zero if no exception occurs. For the input 
forms, a negative value indicates end-of-file and a positive 
value an error. The input/output part of EFL very strongly 
reflects the facilities of FORTRAN. 

8.6.1 Input/Output Units 

Each 1/0 statement refers to a "unit," identified by a small 
positive integer. Two special units are defined by EFL, the 
standard input unit and the standard output unit. These particular 
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units are assumed if no unit is specified in an 1/0 transmission 
statement. 

The data on the unit are organized into records. These records 
may be read or written in a fixed sequence, and each transmis­
sion moves an integral number of records. Transmission 
proceeds from the first record until the end of.file. 

8.6.2 Binary Input/Output 

The readbin and wrltebin statements transmit data in a 
machine-dependent but swift manner. The statements are of 
the form 

writebin( unit , binary-output-list) 
readbin( unit , binary-input-list) 

Each statement moves one unformatted record between storage 
and the device. The unit is an integer expression. A binary­
output-list is an iolist (see below) without any format specifiers. 
A binary-inpuf.list is an iolist without format specifiers in which 
each of the expressions is a variable name, array element, or 
structure member. 

8.6.3 Formatted Input/Output 

The read and write statements transmit data in the form of 
lines of characters. Each statement moves one or more records 
(lines). Numbers are translated into decimal notation. The 
exact form of the lines is determined by format specifications, 
whether provided explicitly in the statement or implicitly. The 
syntax of the statements is 

write( unit , formatted-output-list ) 
read( unit , formatted-input-list ) 

The lists are of the same form as for binary 1/0, except that 
the lists may include format specifications. If the unit is omit­
ted, the standard input or output unit is used. 
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8.6.4 Iolists 

An iolist specifies a set of values to be written or a set of vari­
ables into which values are to be read. An io/ist is a list of one 
or more ioexpressions of the form 

expression 
{ iolisr } 
do-spec(fication { iolist } 

For formatted 1/0, an ioexpression may also have the forms 

ioexpression : jOrmat-spec(/ier 
: }Ormat-spec(fier 

A do-spec(fication looks just like a do statement, and has a simi­
lar effect: the values in the braces are transmitted repeatedly 
until the do execution is complete. 

8.6.5 Formats 

The following are permissible jOrmat-spec(/iers. The quantities 
w, d, and k must be integer constant expressions. 

i( w) integer with w digits 

f( w,d) 

e( w,d) 

l(w) 

c 

c(Kl 

s(k) 
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floating point number of w characters, d of them to 
the right of the decimal point. 

floating point number of w characters, d of them to 
the right of the decimal point, with the exponent field 
marked with the letter e 

logical field of width w characters, the first of which is 
t or f (the rest are blank on output, ignored on input) 
standing for true and false respectively 

character string of width equal to the length of the 
datum 

character string of width w 

skip k lines 
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x(k) skip k spaces 

use the characters inside the string as a FORTRAN 
format 

If no format is specified for an item in a formatted input/output 
statement, a default form is chosen. 

If an item in a list is an array name, then the entire array is 
transmitted as a sequence of elements, each with its own for­
mat. The elements are transmitted in column-major order, the 
same order used for array initializ.ations. 

8.6.6 Manipulation Statements 

The three input/output statements 

backspace( unit) 
rewind(unit) 
endfile(unil) 

,f look like ordinary procedure calls, but may be used either as 
statements or as integer expressions which yield non-zero if an 
error is detected. backspace causes the specified unit to back 
up, so that the next read will re-read the previous record, and 
the next write will over-write it. rewind moves the device to 
its beginning, so that the next input statement will read the first 
record. endfile causes the file to be marked so that the record 
most recently written will be the last record on the file, and any 
attempt to read past is an error. 

9. Procedures 

Procedures are the basic unit of an EFL program, and provide 
the means of segmenting a program into separately compilable 
and named parts. 

9.1 Procedures Statement 

Each procedure begins with a statement of one of the forms 
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procedure 
auriblltes procedure pron•durename 
auribwes procedure procedurename ( ) 
arrribll/es procedure procedurename ( I name ] ) 

The first case specifies the main procedure, where execution 
begins. In the two other cases, the auribwes may specify preci­
sion and type, or they may be omitted entirely. The precision 
and type of the procedure may be declared in an ordinary 
declaration statement. If no type is declared, then the pro­
cedure is called a subrowine and no value may be returned for 
it. Otherwise, the procedure is a function and a value of the 
declared type is returned for each call. Each name inside the 
parentheses in the last form above is called a ./imna/ ai"KIImenl of 
the procedure. 

9.2 End Statement 

Each procedure terminates with a statement 

end 

9.3 Argument Association 

When a procedure is invoked, the actual arguments are 
evaluated. If an actual argument is the name of a variable, an 
array element, or a structure member, that entity becomes 
associated with the formal argument, and the procedure may 
reference the values in the object, and assign to it. Otherwise, 
the value of the actual is associated with the formal argument, 
but the procedure may not attempt to change the value of that 
formal argument. 

If the value of one of the arguments is changed in the pro­
cedure, it is not permitted that the corresponding actual argu­
ment be associated with another formal argument or with a 
common element that is referenced in the procedure. 
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9.4 Execution and Return Values 

After actual and formal arguments have been associated, con­
trol passes to the first executable statement of the procedure. 
Control returns to the invoker either when the end statement 
of the procedure is reached or when a return statement is exe­
cuted. If the procedure is a function (has a declared type), and 
a return( value) is executed, the value is coerced to the correct 
type and precision and returned. 

9.5 Known Functions 

A number of functions are known to EFL, and need not be 
declared. The compiler knows the types of these functions. 
Some of them are xeneric; i.e., they name a family of functions 
that differ in the types of their arguments and return values. 
The compiler chooses which element of the set to invoke based 
upon the attributes of the actual arguments. 

9.5.1 Minimum and Maximum Functions 

The generic functions are min and max. The min calls return 
the value of their smallest argument; the max calls return the 
value of their largest argument. These are the only functions 
that may take different numbers of arguments in different calls. 
If any of the arguments are long real then the result is long 
real. Otherwise, if any of the arguments are real then the 
result is real; otherwise all the arguments and the result must 
be Integer. Examples are 

min(5, x, -3.20) 
max(i, z) 

9.5.2 Absolute Value 

The abs function is a generic function that returns the magni~ 
tude of its argument. For integer and real arguments the type 

.r- of the result is identical to the type of the argument; for com~ 
plex arguments the type of the result is the real of the same 
precision. 

11-41 



EFL 

9.5.3 Elementary Functions 

The following generic functions take arguments of real, long 
real, or complex type and return a result of the same type: 

sin 
cos 
exp 
log 
log10 
sqrt 

In addition, the 
real arguments: 

sine function 
cosine function 
exponential function (ex). 
natural (base e) logarithm 
common (base 10) logarithm 
square root function ( @sqrt x@ ). 

following functions accept only real or long 

a tan 
atan2 

atan(x) = fait t x 
atan2(x,y) = ratr.i x~v 

9.5.4 Other Generic Functions 

The sign function takes two arguments of identical type. The 
mod function yields the remainder of its first argument when 
divided by its second. 

sign(x,y) = sgn(v)lxl. 
mod(x,y) 

These functions accept integer and real arguments. 

10. Atavisms 

The following constructs are included to ease the conversion of 
old FORTRAN or Ratfor programs toEFL. 

10.1 Escape Lines 

In order to make use of nonstandard features of the local FOR­
TRAN compiler, it is occasionally necessary to pass a particular 
line through to the EFL compiler output. Such a line is called 
an escape line and must begin with a percent sign ("%"). 
Escape lines are copied through to the output without change, 
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except that the percent sign is removed. Inside of a procedure, 
each escape line is treated as an executable statement. If a 
sequence of lines constitute a continued FORTRAN statement, 
they should be enclosed in braces. 

10.2 Call Statement 

A subroutine call may be preceded by the keyword call. 

call joe 
call work(17) 

10.3 Obsolete Keywords 

The following keywords are recognized as synonyms of EFL 
keywords: 

FORTRAN EFL 

double precision long real 
function procedure 
subroutine procedure (untyped) 

10.4 Numeric Labels 

Standard statement labels are identifiers. A numeric (positive 
integer constant) label is also permitted; the colon is optional 
following a numeric label. 

10.5 Implicit Declarations 

If a name is used but does not appear in a declaration, the EFL 
compiler gives a warning and assumes a declaration for it. If it 
is used in the context of a procedure invocation, it is assumed 
to be a procedure' name; otherwise it is assumed to be a local 
variable defined at nesting level 1 in the current procedure. 
The assumed type is determined by the first letter of the name. 
The association of letters and types may be given in an implicit 
statement, with syntax 

implicit ( letter-list ) type 
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where a kller-lisr is a list of individual letters or ranges (pair of 
letters separated by a minus sign). If no implicit statement 
appears, the following rules are assumed: 

implicit (a-h, o-z) real 
implicit (i-n) integer 

10.6 Computed Goto 

FORTRAN contains an indexed multi-way branch; this facility 
may be used in EFL by the computed goto: 

goto ( I label I ), expression 

The expression must be of type integer and be positive but be 
no larger than the number of labels in the list. Control is 
passed to the statement marked by the label whose position in 
the list is equal to the expression. 

10.7 Goto Statement 

In unconditional and computed goto statements, it is permissi­
ble to separate the go and to words, as in 

go to xyz 

10.8 Dot Names 

FORTRAN uses a restricted character set, and represents cer­
tain operators by multi-character sequences. There is an 
option, dots=on (see "Compiler Options"), which forces the 
compiler to recognize the forms in the second column below: 

< .lt. 
<~ .le. 
> .gt. 
>~ .ge . 

• eq • 
• ne . 

& • and. 
I .or • 
&& . andand. 
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true 
fri~lse 

.oror . 

. not . 

. true. 

.false. 

EFL 

In this mode, no structure element may be named It, le, etc. 
The readable forms in the left column are always recognized. 

10.9 Complex Constants 

A complex constant may be written as a parenthesized list of 
real quantities, such as 

The preferred notation is by a type coercion, 

complex0.5, 3.0) 

( 10.10 Function Values 

The preferred way to return a value from a function in EFL is 
the return (value) construct. However, the name of the func­
tion acts as a variable to which values may be assigned; an ordi­
nary return statement returns the last value assigned to that 
name as the function value. 

10.11 Equivalence 

A statement of the form 

declares that each of the vi starts at the same memory location. 
Each of the vi may be a variable name, array element name, or 

(.---. structure member. 
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10.12 Minimum and Maximum Functions 

There are a number of non-generic functions in this category, 
which differ in the required types of the arguments and the 
type of the return value. They may also have variable numbers 
of arguments, but all the arguments must have the same type. 

FUNCTION ARGUMENT TYPE RESULT TYPE 

aminO integer real 
aminl real real 
minO integer integer 
minl real integer 
dminl long real long real 
amaxO integer real 
amaxl real real 
maxO integer integer 
maxi real integer 
dmaxl long real long real 

11. Compiler Options 

A number of options can be used to control the output and to 
tailor it for various compilers and systems. The defaults chosen 
are conservative, but it is sometimes necessary to change the 
output to match peculiarities of the target environment. 

Options are set with statements of the form 

option I opt I 

where each opt is of one of the forms 

option name 
optionname - optionva/ue 

The optionva/ue is either a constant (numeric or string) or a 
name associated with that option. The two names yes and no 
apply to a number of options. 
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11.1 Default Options 

Each option has a default setting. It is possible to change the 
whole set of defaults to those appropriate for a particular 
environment by using the system option. At present, the only 
valid values are system=unix and system=gcos. 

11.2 Input Language Options 

The dots option determines whether the compiler recognizes 
.It. and similar forms. The default setting is no. 

11.3 Input/Output Error Handling 

The ioerror option can be given three values: none means that 
none of the 1/0 statements may be used in expressions, since 
there is no way to detect errors. The implementation of the 
ibm form uses ERR= and END= clauses. The implementa­
tion of the fortran77 form uses lOST AT= clauses. 

(""" 11.4 Continuation Conventions 

By default, continued FORTRAN statements are indicated by a 
character in column 6 (Standard FORTRAN). The option 
continue=columnl puts an ampersand (&) in the first column 
of the continued lines instead. 

11.5 Default Formats 

If no format is specified for a datum in an iolist for a read or 
write statement, a default is provided. The default formats can 
be changed by setting certain options 

OPTION TYPE 

iformat integer 
rformat real 
dformat long real 
zformat complex 
zdformat long complex 
lformat logical 

The associated value must be a FORTRAN format, such as 

11-47 



EFL 

option rformat=f22.6 

11.6 Alignments and Sizes 

In order to implement character variables, structures, and the 
slzeof and lengthof operators, it is necessary to know how 
much space various FORTRAN data types require, and what 
boundary alignment properties they demand. The relevant 
options are 

FORTRAN SIZE ALIGNMENT 
TYPE OPTION OPTION 

integer isize ialign 
real rsize ralign 
long real dsize dalign 
complex zsize zalign 
logical !size I align 

The sizes are given in terms of an arbitrary unit; the alignment 
is given in the same units. The option charperint gives the 
number of characters per integer variable. 

11.7 Default Input/Output Units 

The options ftnin and ftnout are the numbers of the standard 
input and output units. The default values are ftnin=S and 
ftnout=6. 

11.8 Miscellaneous Output Control Options 

Each FORTRAN procedure generated by the compiler will be 
preceded by the value of the procheader option. 

No Hollerith strings will be passed as subroutine arguments if 
holllncall =no is specified. 
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No Hollerith strings will be passed as subroutine arguments if 
hollinc_ll =no is specified. 

The FORTRAN statement numbers normally start at 1 and 
increase by I. It is possible to change the increment value by 
using the deltastno option. 

12. Examples 

In order to show the flavor or programming in EFL, we present · 
a few examples. They are short, but show some of the con· 
venience of the language. 

12.1 File Copying 

The following short program copies the standard input to the 
standard output, provided that the input is a formatted file con­
taining lines no longer than a hundred characters. 

procedure # main program 
characterOOO) line 

while( read( , line) 0 ) 
write( , line) 

end 

Since read returns zero until the end of file (or a read error), 
this program keeps reading and writing until the input is 
exhausted. 

12.2 Matrix Multiplication 

The following procedure multiplies the m x n matrix a by the 11 

x p matrix b to give the m x p matrix c. The calculation obeys 
the formula c1; = :E alt.. ht.._r 
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procedure matmul(a, b,c, m,n,p) 
integer i, j, k, m, n, p 
long real a(m,n), b(n,p), c(m,p) 

do i = l,m 
do j = l,p 

{ 

end 

c(ij) = 0 
do k = l,n 

c(ij) + = a(i,k) • b(kj) 

12.3 Searching a Linked List 

Assume we have a list of pairs of numbers (x, y). The list is 
stored as a linked list sorted in ascending order of x values. 
The following procedure searches this list for a particular value 
of x and returns the corresponding y value. 
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define LAST 0 
define NOTFOUND -I 

integer procedure val Wst, first, x) 

# list is an array of structures. 
# Each structure contains a thread index value, 
# an x, and a y value. 

struct 
{ 
integer nextindex 
integer x, y 
l list(•) 

integer first, p, arg 

for(p = first , p-=LAST && list(p).x<=x , 
p = list(p).nextindex) 
iWist(p).x == x) 

return( list(p).y ) 

return(NOTFOUND) 
end 

EFL 

The search is a single for loop that begins with the head of the 
list and examines items until either the list is exhausted 
(p= =LAST) or until it is known that the specified value is not 
on the list (list(p).x > x). The two tests in the conjunction 
must be performed in the specified order to avoid using an 
invalid subscript in the list(p) reference. Therefore, the && 
operator is used. The next element in the chain is found by 
the iteration statement p =list (p) .nextindex. 

12.4 Walking a Tr .. 

As an example of a more complicated problem, let us imagine 
we have an expression tree stored in a common area, and that 
we want to print out an infix form of the tree. Each node is 
either a leaf (containing a numeric value) or it is a binary 
operator, pointing to a left and a right descendant. In a recur­
sive language, such a tree walk would be implemented by the 
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following simple pseudocode: 

if this node is a leaf 
print its value 

otherwise 
print a left parenthesis 
print the left node 
print the operator 
print the right node 
print a right parenthesis 

In a nonrecursive language like EFL, it is necessary to maintain 
an explicit stack to keep track of the current state of the com­
putation. The following procedure calls a procedure outch to 
print a single character and a procedure outval to print a value. 
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procedure walk (first) # print an expression tree 

r integer first # index of root node 
integer currentnode 
integer stackdepth 
common(nodes) struct 

I 
character (I) op 
integer leftp, rightp 
real val 
} treeOOO) # array of structures 

struct 
I 
integer nextstate 
integer nodep 
} stackframe(IOO) 

define NODE 
define STACK 

tree(currentnode) 
stackframe(stackdepth) 

# nextstate values 
define DOWN 1 
define LEFT 2 
define RIGHT 3 

# initialize stack with root mode 
stackdepth = 1 
STACK.nextstate = DOWN 
ST ACK.nodep = first 
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while( stackdepth > 0 ) 

end 

( 
currentnode = STACK.nodep 
select(STACK.nextstate) 

( 
case DOWN: 

if(NODE.op = = " ") # a leaf 
( 
outval( NODE. val 
stackdepth - = 1 
I 

else { # a binary operator node 
outch( "(" ) 
ST ACK.nextstate = LEFT 
stackdepth + = 1 
ST ACK.nextstate DOWN 
ST ACK.nodep = NODE.leftp 
I 

case LEFT: 
outch( NODE.op ) 
STACK.nextstate = RIGHT 
stackdepth + = 1 
STACK.nextstate = DOWN 
ST ACK.nodep = NODE.rightp 

case RIGHT: 
outch( ")" ) 
stackdepth - = 1 

13. Portability 

One of the major goals of the EFL language is to make it easy 
to write portable programs. The output of the EFL compiler is 
intended to be acceptable to any Standard FORTRAN compiler 
(unless the "fortran77" option is specified). 
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13.1 Primitives 

Certain EFL operations cannot be implemented in portable 
FORTRAN, so a few machine-dependent procedures must be 
provided in each environment. 

13.1.1 Character String Copying 

The subroutine eftasc is called to copy one character string to 
another. If the target string is shorter than the source, the final 
characters are not copied. If the target string is longer, its end 
is padded with blanks. The calling sequence is 

subroutine eflasc<a, Ia, b, lb) 
integer a( .. ), Ia, b(•), lb 

and it must copy the first lb characters from b to the first Ia 
characters of a. 

13.1.2 Character String Comparisons 

The function eflcmc is invoked to determine the order of two 
character strings. The declaration is 

integer function eflcmc<a, Ia, b, !b) 
integer a(*), Ia, b(*), lb 

The function returns a negative value if the string a of length 
Ia precedes the string b of length lb. It returns zero if the 
strings are equal, and a positive value otherwise. If the strings 
are of differing length, the comparison is carried out as if the 
end of the shorter string were padded with blanks. 

14. Differences Between Ratfor and EFL 

There are a number of differences between Ratfor and EFL, 
since EFL is a defined language while Ratfor is the union of the 
special control structures and the lar.guage accepted by the 
underlying FORTRAN compiler. Ratfor running over Standard 
FORTRAN is almost a subset of EFL. Most of the features 
described in the "Atavisms" are present to ease the conversion 
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of Ratfor programs to EFL. 

There are a few incompatibilities: 

1. The syntax of the for statement is slightly different 
in the two languages. The three clauses are 
separated by semicolons in Ratfor, but by commas 
in EFL. The initial and iteration statements may be 
compound statements in EFL because of this 
change. 

2. The input/output syntax is quite different in the two 
languages, and there is no FORMAT statement in 
EFL. 

3. There are no ASSIGN or assigned GOTO statements 
in EFL. 

The major linguistic additions are: 

• character data 

• factored declaration syntax 

• block structure 

• assignment and sequential test operators 

• generic functions 

• data structures 

EFL permits more general forms for expressions, and provides 
a more uniform syntax. For example, EFL does not have the 
restrictions on subscript or DO expressions forms as do FOR­
TRAN and Ratfor. 

15. Compiler 

15.1 Current Version 

The current version of the EFL compiler is a two-pass transla­
tor written in portable C. It implements all of the features of 
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the language described above except for long complex 
numbers. 

15.2 Diagnostics 

The EFL compiler diagnoses all syntax errors. It gives the line 
and file name (if known) on which the error was detected. 
Warnings are given for variables that are used but not explicitly 
declared. 

15.3 Quality of FORTRAN Produced 

The FORTRAN produced by EFL is quite clean and readable. 
To the extent possible, the variable names that appear in the 
EFL program are used in the FORTRAN code. The bodies of 
loops and test constructs are indented. Statement numbers are 
consecutive. Few unneeded GOTO and CONTINUE state­
ments are used. It is considered a compiler bug if incorrect 
FORTRAN is produced (except for escaped lines). The follow­
ing is the FORTRAN procedure produced by the EFL compiler 
for the matrix multiplication example (See "Examples.") 

subroutine matmuHa, b, c, m, n, p) 
integer m, n, p 
double precision a(m, n), b(n, p), c(m, p) 
integer i, j, k 
do 3 i = I, m 

do 2 j = I, p 
c(i, j) = 0 
do I k = 1, n 

c(i, j) = c(i, j) +a(i, k)*b(k, j) 
I continue 
2 continue 
3 continue 

end 
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The following is the procedure for the tree walk: 

subroutine walk(first) 
integer first 
common /nodes/ tree 
integer tree(4, 100) 
real tree I (4, 100) 
integer staame(2, 100), stapth, curode 
integer canst 1 (I) 
equivalence (treeO,l), treel(l,l)) 
data constl0)/4h I 

c print out an expression tree 
c index of root node 
c array of structures 
c nextstate values 
c initialize stack with root node 

stapth = I 
staameO, stapth) = 1 
staame(2, stapth) = first 
if (stapth .le. 0) goto 9 

curode = staame(2, stapth) 
goto 7 

2 if (treeO, curode) .ne. canst! (l)) go to 3 

c a leaf 
call outval(treel (4, curode)) 

stapth = stapth-1 
goto 4 

3 call outchOhO 
c a binary operator node 

staame(l, stapth) 2 
stapth = stapth + I 
staame (I, stapth) I 
staame(2, stapth) = tree(2, curode) 

4 goto 8 
5 call outch(treeO, curode)) 

staame (I, stapth) = 3 
stapth = stapth + 1 
staame(l, stapth) 
staame(2, stapth) = treeO, curode) 



6 

7 

goto 8 
call outch (1 h)) 
stapth = stapth-1 
goto 8 
if (staameO. stapth) .eq. 3) goto 6 
if (staameO. stapth) .eq. 2) goto 5 
if (staameO. stapth) .eq. l) goto 2 

8 continue 
goto 1 

9 continue 
end 

16. Constraints on EFL 

EFL 

Although FORTRAN can be used to simulate any finite compu­
tation, there are realistic limits on the generality of a language 
that can be translated into FORTRAN. The design of EFL was 
constrained by the implementation strategy. Certain of the res­
trictions are petty (six character external names), but others are 
sweeping (lack of pointer variables). The following paragraphs 
describe the major limitations imposed by FORTRAN. 

16.1 External Names 

External names (procedure and COMMON block names) must 
be no longer than six characters in FORTRAN. Further, an 
external name is global to the entire program. Therefore, EFL 
can support block structure within a procedure, but it can have 
only one level of external name if the EFL procedures are to be 
compilable separately, as are FORTRAN procedures. 

16.2 Procedure Interface 

The FORTRAN standards, in effect, permit arguments to be 
passed between FORTRAN procedures either by reference or 
by copy-in/copy-out. This indeterminacy of specification shows 
through into EFL. A program that depends on the method of 
argument transmission is illegal in either language. 
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There are no procedure-valued variables in FORTRAN. That 
is, a procedure name may ONLY be passed as an argument or 
be invoked - it cannot be stored. 

16.3 Pointers 

The most grievous problem with FORTRAN is its lack of a 
pointer-like data type. The implementation of the compiler 
would have been far easier, and the language itself simplified 
considerably, if certain cases could have been handled by 
pointers. There are several ways of "simulating" pointers by 
using subscripts, but this raises problems of external variables 
and initialization. 

16.4 Recursion 

FORTRAN procedures are not recursive, so it was not practical 
to permit EFL procedures to be recursive. As in the case of 
pointers, recursion may be simulated in EFL, but not without 
considerable effort. 

16.5 Storage Allocation 

The definition of FORTRAN does not specify the lifetime of 
variables. It would be possible but cumbersome to implement 
stack or heap storage disciplines by using COMMON blocks. 
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Chapter 12 

LINT-

A C PROGRAM CHECKER 

1. Introduction 

LINT 

The C program checker, lint, can be used to detect bugs, 
obscurities, inconsistencies and portability of C programs. It is 
generally stricter than the C compiler, which accepts construc­
tions without complaint that lint considers wasteful or error­
prone. The lint program is also much stricter with regard to 
the C language type rules. Also, lint accepts multiple files and 
library specifications and checks them for consistency. 

In addition to the many thorough checking mechanisms them­
selves, lint offers the facility of suppressing them if they are 
not necessary for a given application. 

1.1 Usage 

The lint command has the form: 

lint [options] files ... library-descriptors ... 

• options are optional flags to control lint checking 
and messages 

• "files" are the files to be checked by lint. Natur­
ally, files containing C language programs must end 
with a .c suffix since this is mandatory for both lint 
and the C compiler. 

• library-descriptors are the names of libraries to be 
used in checking the program. 

The lint library files are processed almost exactly like ordinary 
source files. The only difference is that functions which are 
defined on a library file, but are not used on a source file, do 
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NOT result in messages. 

The lint program does not simulate a full library search algo­
rithm and will print messages if the source files contain a 
redefinition of a library routine. 

1.2 Options 

When more than one option is used, they should be combined 
into a single argument, such as, - ab or - xha. 

The options that are currently supported by the lint program 
are: 

-a 

-b 

Use this option to suppress messages concerning 
the assignment of "long" values to variables 
which are not "long." This option is often useful 
as there are a number of legitimate reasons for 
assigning "longs" to "ints." 

Use this option to suppress messages concerning 
"break" statements which are unreachable. For 
example, programs generated by yacc and espe­
cially lex may have hundreds of unreachable break 
statements. If the C compiler optimizer were 
used, these unreached statements would be of lit­
tle importance, but the resulting messages would 
clutter up the lint output. In this case, the -b 
option is especially useful. 

- c This option is no longer available. 

- h Use this option only to suppress the use of 
"heuristics." Heuristics is used by default to 
check for wasteful or error-prone constructions 
and to detect bugs. For example, by default lint 
prints messages about variables which 8re declared 
in inner blocks in a way that conflicts with their 
use in outer blocks. Though this construction is 
considered "legal," it remains bad programming 
style, and frequently a bug. 
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Use this option to specify libraries you wish 
included and checked by lint. The source code is 
tested for compatibility with these libraries. This 
is done by accessing library description files whose 
names are constructed from the library arguments. 
These files MUST all begin with the comment: 

I• LINTLIBRARY •/ 

This comment must then be followed by a series 
of dummy function definitions. The critical parts 
of these definitions are: 

• the declaration of the function return 
type, 

• whether the dummy function returns a 
value, and 

• the number and types of arguments to 
the function. 

The VARARGS and ARGSUSED comments can 
be used to specify features of the library func­
tions. 

- n Use this option to suppress checking for compati­
bility with either the standard or the portable lint 
library. In effect, this option supresses ALL 
library checking. 

-0 name Use this option to create a lint library from input 
files named llib-lname.ln. 

-p 

-u 

Use this option to check a program's portability to 
other dialects of C language. This option checks a 
file containing descriptions of standard library rou­
tines which are expected to be portable. 

Use this option to suppress messages concerning 
function and external variables which are either 
used and not defined or defined and not used. 
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-v 

The comment: 

I• VARARGS •/ 

can be used to suppress messages about variable 
number of arguments in calls to a function. The 
comment should be added before the function 
definition. In some cases, it is desirable to check 
the first several arguments and leave the later 
arguments unchecked. This can be done with a 
digit giving the number of arguments which 
should be checked. For example: 

I• VARARGS2 •I 

will cause ONLY the first two arguments to be 
checked. 

When lint is applied to some but not all files out 
of a collection which are to be loaded together, 
information about unused or undefined variables 
is more distracting than helpful. In this case, 
many of the functions and variables defined may 
not be used. Conversely, many functions and 
variables defined elsewhere may be used. The -u 
option is especially useful to suppress the spurious 
messages which might otherwise appear. 

Use this option to suppress messages concerning 
unused function arguments. To suppress such 
messages for one function only, place the follow­
ing comment in the program before that function: 

I• ARGSUSED •/ 

-x Use this option to suppress messages concerning 
variables referred to by external declarations but 
never used. 

By default, lint checks the programs it is given against a stan­
dard library file which contains descriptions of the programs 
which are normally loaded when a C language program is run. 
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When the - p option is used, another file is checked containing 
descriptions of the standard library routines which are expected 
to be portable across various machines. The - n option can be 
used to suppress all library checking. 

2. Types of Messages 

The following paragraphs describe the major categories of mes· 
sages printed by lint. 

2.1 Unused Variables and Functions 

As sets of programs evolve and develop, previously used vari­
ables and arguments to functions may become unused. It is 
not uncommon for external variables or even entire functions 
to become unnecessary and yet not be removed from the 
source. These types of errors rarely cause working programs to 
fail, but are a source of inefficiency and make programs harder 
to understand and change. Also, information about such 
unused variables and functions can occasionally serve to dis­
cover bugs. 

The lint program prints messages about variables and functions 
which are defined but not otherwise mentioned. 

It is possible to suppress messages regarding variables which are 
declared through explicit extern statements but are never refer­
enced. The statement: 

extern double sin 0; 

will evoke no comment if sin is never used, providing the -x 
option is used. (Note: this agrees with the semantics of the C 
compiler.) 

In some cases, these unused external declarations might be of 
some interest, in which case you can use lint without the - x 
option. 
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Certain styles of programming require many functions to be 
written with similar interfaces. Frequently, some of the argu­
ments may be unused in many of the calls. The -v option is 
available to suppress the printing of messages about unused 
arguments. 

When -v is in effect, no messages are produced about unused 
arguments including for those arguments which are unused and 
also declared as register arguments. This can be considered an 
active (and preventable) waste of the register resources of the 
machine. 

Messages about unused arguments can be suppressed for one 
function by adding the comment: 

I• ARGSUSED •/ 

to the program before the function. This has the effect of the 
- v option for only one function. Also, the comment: 

I• VARARGS •/ 

can be used to suppress messages about variable number of 
arguments in calls to a function. The comment should be 
added before the function definition. In some cases, it is desir­
able to check the first several arguments and leave the later 
arguments unchecked. This can be done with a digit giving the 
number of arguments which should be checked. For example: 

/ .. V ARARGS2 •I 

will cause ONLY the first two arguments to be checked. 

There is one case where information about unused or 
undefined variables is more distracting than helpful: 

when lint is applied to some but not all files out of a collection 
which are to be loaded together. 
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In this case, many of the functions and variables defined may 
not be used. Conversely, many functions and variables defined 
elsewhere may be used. The -u option may be used to 
suppress the spurious messages which might otherwise appear. 

2.2 Set/Used Information 

The lint program attempts to detect cases where a variable is 
used before it is set. The lint program detects local variables 
(automatic and register storage classes) whose first use appears 
earlier than the first assignment to the variable. It assumes that 
taking the address of a variable constitutes a "use," since the 
actual use may occur at any later time, in a data-dependent 
fashion. 

The restriction to the physical appearance of variables in the file 
makes the algorithm very simple and quick to implement since 
the true flow of control need not be discovered. It does mean 
that lint can print messages about some programs which are 
legal, but these programs would probably be considered bad on 
stylistic grounds. Because static and external variables are ini­
tialized to zero, no meaningful information can be discovered 
about their uses. The lint program does deal with initialized 
automatic variables. 

The set/used information also permits recognition of those 
local variables which are set and never used. These form a fre­
quent source of inefficiencies and may also be symptomatic of 
bugs. 

2.3 Flow of Control 

The lint program attempts to detect unreachable portions of the 
programs which it processes. It will print messages about unla­
beled statements immediately following goto, break, continue 
or return statements. An attempt is made to detect loops 
which can never be left at the bottom and to recognize the spe­
cial cases while (I) and for(;;) as infinite loops. 
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The lint program also prints messages about loops which can­
not be entered at the top. Some valid programs may have such 
loops which are considered to be bad style at best and bugs at 
worst. 

The lint program has no way of detecting functions which are 
called and never returned. Thus, a call to exit may cause an 
unreachable code which lint does NOT detect. The most seri­
ous effects of this are in the determination of returned function 
values (see the section on "Function Values"). If a particular 
place in the program cannot be reached but it is not apparent to 
lint, the comment 

I• NOTREACHED •/ 

can be added at the appropriate place. This comment will 
inform llnt that a portion of the program cannot be reached. 

The lint program will not print a message about unreachable 
break statements if given the - b option. Programs generated 
by yacc and especially lex may have hundreds of unreachable 
break statements. The -0 option in the C compiler will often 
eliminate the resulting object code inefficiency. Thus, these 
unreached statements are of little importance. There is typi­
cally nothing the user can do about them, and the resulting 
messages would clutter up the lint output. If these messages 
are desired, lint can be invoked without the - b option. 

2.4 Function Values 

Sometimes functions return values that are never used. Some­
times programs incorrectly use function "values" that have 
never been returned. The lint program addresses this problem 
in a number of ways. 

Locally, within a function definition, the appearance of both 

return ( expr ) ; 
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and 

( return; 

is cause for alarm. The lint program will give the message: 

function name contains return(e) and return 

The most serious difficulty with this is detecting when a func­
tion return is "implied" when the control flow of a program 
reaches the end of the function. For example: 

f ( a ) I 
if ( a ) return ( 3 ); 
g 0; 

In this example, if the result of "a" is false, /will call g and 
then return with no defined return value. This will trigger a 
message from lint. If g, like exit, never returns, the message 
will still be produced when in fact nothing is wrong. 

In practice, some potentially serious bugs have been discovered 
by this feature. 

On a global scale, lint detects cases where a function returns a 
value that is sometimes or never used. When the value is 
never used, it may constitute an inefficiency in the function 
definition. When the value is sometimes unused, it may 
represent bad style (e.g., not testing for error conditions). 

The dual problem, using a function value when the function 
does not return one, is also detected. This is a serious prob-

,/""' tern. 
' 
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2.5 Type Checking 

The lint program enforces the type checking rules of C 
language more strictly than the compilers do. The additional 
checking is in four major areas: 

• Across certain binary operators and implied assign-
ments 

• At the structure selection operators 

• Between the definition and uses of functions 

• In the use of enumerations. 

There are a number of operators which have an implied balanc­
ing between types of the operands. The assignment, condi­
tional ( ? : ) , and relational operators have this property. The 
argument of a return statement and expressions used in initiali­
zation suffer similar conversions. In these operations, char, 
short, int, long, unsigned, float and double types may be 
freely intermixed. 

The types of pointers MUST agree exactly except that arrays of 
x's can, of course, be intermixed with pointers to x's. 

The type checking rules also require that, in structure refer­
ences, the left operand of the - > be a pointer to structure, 
the left operand of the . be a structure, and the right operand 
of these operators be a member of the structure implied by the 
left operand. S.imilar checking is done for references to unions. 

Strict rules apply to function argument and return value match­
ing. The types ftoat and double may be freely matched, as may 
the types char, short, int and unsigned. Also, pointers can be 
matched with the associated arrays. Aside from this, all actual 
arguments must agree in type with their declared counterparts. 
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With enumerations, checks are made that enumeration vari­
ables or members are not mixed with other types or other 
enumerations and that the only operations applied are ... , ini­
tialization, --, ! = and function arguments and return values. 

If it is desired to turn off strict type checking for an expression, 
the comment 

I• NOSTRICT "/ 

should be added to the program immediately before the expres­
sion. This comment will prevent strict type checking for only 
the next line in the program. 

2.6 Type Casts 

The type cast feature in C language was introduced largely as an 
aid to producing more portable programs. Consider the assign­
ment 

p = 1 ; 

where p is a character pointer. The lint program will print a 
message as a result of detecting this. Consider the assignment 

p = (char oc)l ; 

in which a cast has been used to convert the integer to a char· 
acter pointer. The programmer obviously had a strong motiva· 
tion for doing this and has clearly signaled his intentions. It 
seems harsh for lint to continue to print messages about this. 
On the other hand, if this code is moved to another machine, 
such code should be looked at carefully. The -c flag controls 
the printing of comments about casts. When -c is in effect, 
casts are treated as though they were assignments subject to 
messages. Otherwise, all legal casts a;·e passed without com· 
ment - no matter how strange the type mixing seems to be. 
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2.7 Nonportable Character Use 

On some systems, characters are signed quantities with a range 
from -128 to 127. On other C language implementations, 
characters take on only positive values. Thus, lint will print 
messages about certain comparisons and assignments as being 
illegal or nonportable. For example: 

char c; 

if( (c = getcharO) < 0 ) ... 

will work on one machine but will fail on machines where char· 
acters always take on positive values. The real solution is to 
declare c as an integer since getchar is actually returning integer 
values. In any case, lint will print the message "nonportable 
character comparison.'' 

A similar issue arises with bit fields. When assignments of con­
stant values are made to bit fields, the field may be too small to 
hold the value. This is especially true because on some 
machines bit fields are considered as signed quantities. While it 
may seem logical to consider that a two-bit field declared of 
type int cannot hold the value 3, the problem disappears if the 
bit field is declared to have type unsigned 

2.8 Assignments of "longs" to "ints" 

Bugs may arise from the assignment of long to an int, which 
will truncate the contents. This may happen in programs which 
have been incompletely converted to use typedefs. When a 
typedef variable is changed from int to long, the program can 
stop working because some intermediate results may be 
assigned to ints, which are truncated. Since there are a number 
of legitimate reasons for assigning longs to ints, the detection 
of these assignments is disabled by the -a option. However, if 
using the - p option to detect possible portability problems, 
lint may print the message, "warning: conversion from long 
may lose accuracy," in spite of the use of the -a option. 
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2.9 Strange Constructions 

Several perfectly legal, but somewhat strange, constructions are 
detected by lint. The messages hopefully encourage better 
code quality, clearer style, and may even point out bugs. The 
- h option is used to suppress the majority of these checks. 

For example: 

•p++ ; 

the • does nothing. This provokes the message "null effect" 
from lint. For example: 

unsigned x; 
if(x<O) ... 

results in a test that will never succeed. For another example: 

/__. if(x>O) 

(~ 

is equivalent to 

if(x!= 0) 

which may NOT be the intended action. The lint program will 
print the message "degenerate unsigned comparison" in these 
cases. If a program contains something similar to 

if(l!~O) ... 

lint will print the message "constant in conditional context" 
since the comparison of 1 with 0 gives a constant result. 

Another construction detected by lint involves operator pre­
cedence. Bugs which arise from misunderstandings about the 
precedence of operators can be accentuated by spacing and for­
matting, making such bugs extremely hard to find. For exam­
ple: 
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if( x&077 ~~ 0) ... 

o• 
x<<2 + 40 

probably do NOT do what was intended. The best solution is 
to parenthesize such expressions, and lint encourages this by 
an appropriate message. 

When the - h option has not been used, lint prints messages 
about variables which are redeclared in inner blocks in a way 
that conflicts with their use in outer blocks. Although this is 
considered "legal," it remains bad style, usually unnecessary 
and frequently a bug. 

2.10 Old Syntax 

Several forms of older syntax are now illegal. These fall into 
two classes -

1. assignment operators and 

2. initialization. 

The older forms of assignment operators (e.g., - +, ... -, ... ) 
could cause ambiguous expressions. For example: 

a =-1; 

could be taken as either 

a=- 1; 

o• 
a= -1 
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The situation is especially perplexing if this kind of ambiguity 
arises as the result of a macro substitution. The newer and pre· 
ferred operators (e.g., + =, --, .. .) have no such ambigui­
ties. To encourage the abandonment of the older forms, lint 
prints messages about these old-fashioned operators. 

A similar issue arises with initialization. The older language 
allowed 

int xi; 

to initialize x to 1. This also caused syntactic difficulties. For 
example: 

intx(-1); 

looks somewhat like the beginning of a function definition: 

int x ( y ) { , .. 

and the compiler must read past x in order to determine the 
correct meaning. Again, the problem is even more perplexing 
when the initializer involves a macro. The current syntax 
places an equals sign between the variable and the initializer. 
For example: 

intx=-1; 

This is free of any possible syntactic ambiguity. 

2.11 Pointer Alignment 

Certain pointer assignments may be reasonable on some 
machines and illegal on others due entirely to alignment restric­
tions. The lint program tries to detect cases where pointers are 
assigned to other pointers and such alignment problems might 
arise. The message "possible pointer alignment problem" 
results from this situation. 
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2.12 Multiple Uses and Side Effects 

In complicated expressions, the best order in which to evaluate 
subexpressions may be highly machine dependent. For exam­
ple, on machines Oik.e the PDP-11) in which the stack runs 
backwards, function arguments will probably be best evaluated 
from right to left. On machines with a stack running forward, 
left to right seems most attractive. Function calls embedded as 
arguments of other functions may or may not be treated simi­
larly to ordinary arguments. Similar issues arise with other 
operators which have side effects, such as the assignment 
operators and the increment and decrement operators. 

In order that the efficiency of C language on a particular 
machine not be unduly compromised, the C language leaves 
the order of evaluation of complicated expressions up to the 
local compiler. In fact, the various C compilers have consider­
able differences in the order in which they will evaluate compli­
cated expressions. In particular, if any variable is changed by a 
side effect and also used elsewhere in the same expression, the 
result is explicitly undefined. 

The lint program checks for the important special case where a 
simple scalar variable is affected. For example: 

alii ~ b[i+ + ]; 

will cause lint to print the message "warning: i evaluation order 
undefined" in order to call attention to this condition. 
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Chapter 13 

SDB-

SYMBOLIC DEBUGGING PROGRAM 

1. Introduction 

SDB 

This chapter describes the symbolic debugger sdb(l) as imple­
mented for C language and Fortran 77 programs on the 
UniPius+® Operating System. The sdb program is useful both 
for examining core images of aborted programs and for provid­
ing an environment in which execution of a program can be 
monitored and controlled. 

The sdb program allows interaction with a debugged program at 
the source language level. When debugging a core image from 
an aborted program, sdb reports which line in the source pro­
gram caused the error and allows all variables to be accessed 
symbolically and to be displayed in the correct format. 

Breakpoints may be placed at selected statements or the pro­
gram may be single stepped on a line-by-line basis. To facili­
tate specification of lines in the program without a source list­
ing, sdb provides a mechanism for examining the source text. 
Procedures may be called directly from the debugger. This 
feature is useful both for testing individual procedures and for 
calling user-provided routines which provided formatted prin­
tout of structured data. 

z. Usage 

In order to use sdb to its full capabilities, it is necessary to 
compile the source program with the - g option. This causes 
the compiler to generate additional information about the vari­
ables and statements of the compiled program. When the -g 
option has been specified, sdb can be used to obtain a trace of 
the called functions at the time of the abort and interactively 
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display the values of variables. 

A typical sequence of shell commands for debugging a core 
image is 

$ cc - g prgm.c - o prgm 
$ prgm 
Bus error - core dumped 
$ sdb prgm 
main:25: x[i] = 0; 
• 

The program prgm was compiled with the - g option and then 
executed. An error occurred which caused a core dump. The 
sdb program is then invoked to examine the core dump to 
determine the cause of the error. It reports that the bus error 
occurred in function main at line 25 (line numbers are always 
relative to the beginning of the file) and outputs the source text 
of the offending line. The sdb program then prompts the user 
with an "' indicating that it awaits a command. 

It is useful to know that sdb has a notion of current function 
and current line. In this example, they are initially set to 
"main" and "25", respectively. 

In the above example, sdb was called with one argument, 
prgm. In general, sdb takes three arguments on the command 
line: 

13-2 

1. The first argument is the name of the executable file 
to be debugged; it defaults to a.out when not 
specified. Even with the new COFF format, the 
executable file will be named a.out. However, sdb 
will not work on old a.out format files. Only COFF 
files may be used with sdb. 

2. The second argument is the name of the core file, 
defaulting to core; 



3. The third 
containing 
debugged. 

SOB 

argument is the name of the directory 
the source of the program being 

The sdb program currently requires all source to reside in a sin­
gle directory. The default is the working directory. In the 
example, the second and third arguments defaulted to the 
correct values, so only the first was specified. 

It is possible that the error occurred in a function which was 
not compiled with the - g option. In this case, sdb prints the 
function name and the address at which the error occurred. 
The current line and function are set to the first executable line 
in main. The sdb program will print an error message if main 
was not compiled with the - g option, but debugging can con­
tinue for those routines compiled with the -g option. 

The following is a typical example of sdb usage. The first 
display, Figure 13.1, is the source file used to create the output 
file used to illustrate the use of sdb. The second figure, Figure 
13.2, is an illustration of a session with sdb. Commands in 
bold are to be input explicitly; responses from sdb and com­
ments are in roman for clarity. 
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$ cat testdiv2.c 
main(argc, argv, envp) 
char ''""argv, nenvp; { 

inti; 
i = div2( -l); 
printf(" -1/2 - %d\n", i); 

div2(i) { 

} 

int j; 
j=i>>l; 
return(j); 

$ cc -g testdtv2.c 
$ a.out 
-112- -1 

Figure 13.1. Input File Used for SDB Example 

$ sdb 
No core image 

•rctiv2 
7: div2(i) { 

•z 
7: div2(i) { 
8: intj; 
9: j = i>>l; 
10: return (j); 
11: } 

•div2:b 
div2:9 b 

•r 

#Warning message from sdb 

# Search for function "div2" 
# It starts on line 7 

# Print the next few lines 

# Place breakpoint at beginning of "div2" 
# sdb echoes proc name and line number 

#Run the function 
a.out # sdb echoes command line executed 
Breakpoint at # Executions stops just before line 9 
div2:9: j = i>>l; 

•t # Print trace of subroutine calls 
div2(i= -1) [testdiv2.c:9] 
main(argc = 1 ,argv =Ox7fffff50,envp- Ox7ftlff58) ltestdiv2.c:4] 

•1/ #Print i 
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-I 

•s # Single step 
div2:10: return(j);# Execution stops before line 10 

#Print j 

# Delete the breakpoint •9d 
*div2U)/ # Try running "div2" with different arguments 
0 

•div2(-2)/ 
-I 

•div2{-3)/ 
-2 

•• 
Figure 13.2. Example of SOB Usage 

{ 2.1 Printing a Stack Trace 

It is often useful to obtain a listing of the function calls which 
led to the error. This is obtained with the t command. For 
example: 

•t 
sub(x=2,y=3) [prgm.c:25] 
inter(i= 16012) [prgm.c:96] 
main (argc = 1 ,argv=Ox7fffff54,envp= Ox7fffff5c) (prgm.c: 15] 

This indicates that the error occurred within the function sub at 
line 25 in file prgm.c. The sub function was called with the 
arguments x=2 and y=3 from inter at line 96. The inter 
function was called from main at line 15. The main function is 
always called by the shell with three arguments often referred 

( to as argc, argv, and envp. Note that argv and envp are 
pointers, so their values are printed in hexadecimal. 
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2.2 Examining Variables 

The sdb program can be used to display variables in the stopped 
program. Variables are displayed by typing their name followed 
by a slash, so 

•errOag/ 

causes sdb to display the value of variable errflag. Unless oth· 
erwise specified, variables are assumed to be either local to or 
accessible from the current function. To specify a different 
function, use the form 

•sub:i/ 

to display variable i in function sub. F77 users can specify a 
common block variable in the same manner. 

The sdb program supports a limited form of pattern matching 
for variable and function names. The symbol • is used to 
match any sequence of characters of a variable name and ? to 
match any single character. Consider the following commands 

•x .. / 
•sub:y?/ 
••I 

The first prints the values of all variables beginning with x, the 
second prints the values of all two letter variables in function 
sub beginning with y, and the last prints all variables. In the 
first and last examples, only variables accessible from the 
current function are printed. The command 

displays the variables for each function en the call stack. 

The sdb program normally displays the variable in a format 
determined by its type as declared in the source program. To 
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request a different format, a specifier is placed after the slash. 
The specifier consists of an optional length specification fol­
lowed by the format. The length specifiers are: 

b 

h 

I 

One byte 

Two bytes (half word) 

Four bytes (long word). 

The lengths are effective only with the formats d, o, x, and u. 
If no length is specified, the word length of the host machine is 
used. A numeric length specifier may be used for the s or a 
commands. These commands normally print characters until 
either a null is reached or 128 characters are printed. The 
number specifies how many characters should be printed. 

There are a number of format specifiers available: 

a Print characters starting at the variable's address 
until a null is reached. 

c Character. 

d Decimal. 

f 32-bit single-precision floating point. 

1 64-bit double-precision floating point. 

i Interpret as a machine-language instruction. 

o Octal. 

p Pointer to function. 

s Assume variable is a string pointer and print charac­
ters starting at the address pointed to by the variable 
until a null is reached. 

u Decimal unsigned. 

x Hexadecimal. 

13-7 



SDB 

For example, the variable i can be displayed with 

.. lfx 

which prints out the value of i in hexadecimal. 

The sdb program also knows about structures, arrays, and 
pointers so that all of the following commands work. 

•arrayl21131/ 
•sym.id/ 
•psym- >usage/ 
•xsym(20).p- >usage/ 

The only restriction is that array subscripts must be numbers. 
Depending on your machine, accessing arrays may be limited to 
l·dimensional arrays. Note that as a special case: 

•psym->/d 

displays the location pointed to by psym in decimal. 

Core locations can also be displayed by specifying their absolute 
addresses. The command 

•1024/ 

displays location 1024 in decimal. As in C language, numbers 
may also be specified in octal or hexadecimal so the above com­
mand is equivalent to both 

•02000/ 

and 

It is possible to mix numbers and variables so that 
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•IOOO.x/ 

refers to an element of a structure starting at address 1000, and 

.. 1000->x/ 

refers to an element of a structure whose address is at 1000. 
For commands of the type •lOOO.x/ and •1000->x/, the sdb 
program uses the structure template of the last structured refer­
enced. 

The address of a variable is printed with the =, so 

displays the address of i. Another feature whose usefulness 
will become apparent later is the command 

~ •./ 

which redisplays the last variable typed. 

3. Display and Manipulation 

The sdb program has been designed to make it easy to debug a 
program without constant reference to a current source listing. 
Facilities are provided which perform context searches within 
the source files of the program being debugged and to display 
selected portions of the source files. The commands are similar 
to those of the UniPius+ system text editor ed(l). Like the 
editor, sdb has a notion of current file and line within the file. 

The sdb program also knows how the lines of a file are parti­
tioned into functions, so it also has a notion of current func­
tion. As noted in other parts of this document, the current 
function is used by a number of sdb commands. 
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3.1 Displaying the Source File 

Four commands exist for displaying lines in the source file. 
They are useful for perusing the source program and for deter­
mining the context of the current line. The commands are: 

p Prints the current line. 

w Window; prints a window of ten lines around the current 
line . 

.z Prints ten lines starting at the current line. Advances the 
current line by ten. 

CTRL-d Scrolls; prints the next ten lines and advances the 
current line by ten. This command is used to cleanly 
display long segments of the program. 

When a line from a file is printed, it is preceded by its line 
number. This not only gives an indication of its relative posi­
tion in the file but is also used as input by some sdb com­
mands. 

3.2 Changing the Source File or Function 

The e command is used to change the current source file. 
Either of the following forms: 

•e function 
•e file.c 

may be used. The first causes the file containing the named 
function to become the current file, and the current line 
becomes the first line of the function. The other form causes 
the named file to become current. In this case, the current line 
is set to the first line of the named file. Finally, an e command 
with no argument causes the current function and file named to 
be printed. 
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3.3 Changing the Current Line in the Source File 

The z and CTRL-D commands have a side effect of changing 
the current line in the source file. The following paragraphs 
describe other commands that change the current line. 

There are two commands for searching for instances of regular 
expressions in source files. They are 

•/regular expression/ 
*?regular expression? 

The first command searches forward through the file for a line 
containing a string that matches the regular expression and the 
second searches backwards. The trailing I and ? may be omit­
ted from these commands. Regular expression matching is 
identical to that ofed(l). 

The + and - commands may be used to move the current line 
forwards or backwards by a specified number of lines. Typing a 
new-line advances the current line by one, and typing a number 
causes that line to become the current line in the file. These 
commands may be combined with the display commands so 
that 

•+15z 

advances the current line by 15 and then prints ten lines. 

4. A Controlled Testing Environment 

One very useful feature of sdb is breakpoint debugging. After 
entering sdb, certain lines in the source program may be 
specified to be breakpoints. The program is then started with a 
sdb command. Execution of the program proceeds as normal 
until it is about to execute one of the lines at which a break· 
point has been set. The program stops and sdb reports the 
breakpoint where the program stopped. Now, sdb commands 
may be used to display the trace of function calls and the values 
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of variables. If the user is satisfied the program is working 
correctly to this point, some breakpoints can be deleted and 
others set; then program execution may be continued from the 
point where it stopped. 

A useful alternative to setting breakpoints is single stepping. 
The sdb program can be requested to execute the next line of 
the program and then stop. This feature is especially useful for 
testing new programs, so they can be verified on a statement­
by-statement basis. 

If an attempt is made to single step through a function which 
has not been compiled with the -g option, execution proceeds 
until a statement in a function compiled with the -g option is 
reached. It is also possible to have the program execute one 
machine level instruction at a time. This is particularly useful 
when the program has not been compiled with the -g option. 

4.1 Setting and Deleting Breakpoints 

Breakpoints can be set at any line in a function which contains 
executable code. The command format is: 

•12b 
•proc:12b 
•proc:b 
•b 

The first form sets a breakpoint at line 12 in the current file. 
The line numbers are relative to the beginning of the file as 
printed by the source file display commands. The second form 
sets a breakpoint at line 12 of function proc, and the third sets 
a breakpoint at the first line of proc. The last sets a breakpoint 
at the current line. 

Breakpoints are deleted similarly with the commands 
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In addition, if the command d is given alone, the breakpoints 
are deleted interactively. Each breakpoint location is printed, 
and a line is read from the user. If the line begins with a y or 
d, the breakpoint is deleted. 

A list of the current breakpoints is printed in response to a 8 
command, and the D command deletes all breakpoints. It is 
sometimes desirable to have sdb automatically perform a 
sequence of commands at a breakpoint and then have execution 
continue. This is achieved with another form of the b comw 
man d. 

*12b t;x/ 

causes both a trace back and the value of x to be printed each 
time execution gets to line 12. The a command is a variation 
of the above command. There are two forms: 

•proc:a 
•proc:12a 

The first prints the function name and its arguments each time 
it is called, and the second prints the source line each time it is 
about to be executed. For both forms of the a command, exe­
cution continues after the function name or source line is 
printed. 

4.2 Running the Program 

The r command is used to begin program execution. It restarts 
the program as if it were invoked from the shell. The com­
mand 

*t args 
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runs the program with the given arguments as if they had been 
typed on the shell command line. If no arguments are 
specified, then the arguments from the last execution of the 
program are used. To run a program with no arguments, use 
the R command. 

After the program is started, execution continues until a break­
point is encountered, a signal such as INTERRUPT or QUIT 
occurs, or the program terminates. In all cases after an 
appropriate message is printed, control returns to sdb. 

The c command may be used to continue execution of a 
stopped program. A line number may be specified, as in: 

"'PfOC:t2c 

This places a temporary breakpoint at the named line. The 
breakpoint is deleted when the c command finishes. There is 
also a c command which continues but passes the signal which 
stopped the program back to the program. This is useful for 
testing user-written signal handlers. Execution may be contin­
ued at a specified line with the g command. For example: 

•17 g 

continues at line 17 of the current function. A use for this 
command is to avoid executing a section of code which is 
known to be bad. The user should not attempt to continue 
execution in a function different than that of the breakpoint. 

The s command is used to run the program for a single line. It 
is useful for slowly executing the program to examine its 
behavior in detail. An important alternative is the S command. 
This command is like the s command but does not stop within 
called functions. It is often used when one is confident that the 
called function works correctly but is interested in testing the 
calling routine. 
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The i command is used to run the program one machine level 
instruction at a time while ignoring the signal which stopped 
the program. Its uses are similar to the s command. There is 
also an I command which causes the program to execute one 
machine level instruction at a time, but also passes the signal 
which stopped the program back to the program. 

4.3 Calling Functions 

It is possible to call any of the functions of the program from 
sdb. This feature is useful both for testing individual functions 
with different arguments and for calling a function which prints 
structured data in a nice way. There are two ways to call a 
function: 

•proc(argl, arg2, ... ) 
•prodargl, argl, .. .)/m 

The first simply executes the function. The second is intended 
for calling functions (it executes the function and prints the 
value that it returns). The value is printed in decimal unless 
some other format is specified by m. Arguments to functions 
may be integer, character or string constants, or values of vari­
ables which are accessible from the current function. 

An unfortunate bug in the current implementation is that if a 
function is called when the program is not stopped at a break­
point (such as when a core image is being debugged) all vari­
ables are initialized before the function is started. This makes 
it impossible to use a function which formats data from a 
dump. 

5. Machine Language Debugging 

The_ sdb program has facilities for examining programs at the 
machine language level. It is possible to print the machine 
language statements associated with a line in the source and to 
place breakpoints at arbitrary addresses. The sdb program can 
also be used to display or modify the contents of the machine 
registers. 
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5.1 Displaying Machine Language Statements 

To display the machine language statements associated with line 
"25" in function "main," use the command 

•main:25? 

The ? command is identical to the I command except that it 
displays from text space. The default format for printing text 
space is the i format which interprets the machine language 
instruction. The CTRL-d command may be used to print the 
next ten instructions. 

Absolute addresses may be specified instead of line numbers by 
appending a : to them so that 

•Ox1024:? 

displays the contents of address Ox1024 in text space. Note 
that the command 

•Ox1024? 

displays the instruction corresponding to line Ox1024 in the 
current function. It is also possible to set or delete a break­
point by specifying its absolute address; 

•Ox1024:b 

sets a breakpoint at address Ox1024. 

5.2 Manipulating Registers 

The x command prints the values of all the registers. Also, 
individual registers may be named instead of variables by 
appending a % to their name so that 

•r3Y. 
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displays the value of register r3. 

5.3 Other Commands 

To exit sdb, use the q command. 

The ! command is identical to that in ed(l) and is used to 
have the shell execute a command. 

It is possible to change the values of variables when the pro· 
gram is stopped at a breakpoint. This is done with the com­
mand 

•variable!value 

which sets the variable to the given value. The value may be a 
number, character constant, register, or the name of another 
variable. If the variable is of type float or double, the value can 

r also be a floating-point constant. 
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