

r

EFL

long complex A long complex quantity is an approximation to
a complex number, and is represented as a pair
of long reals.

character(n) A character quantity is a fixed-length string of
n characters.

5.2 Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally
preceded by a plus or minus sign, as in

:---· 17
-94
+6
0

A long real {"double precision") constant is a floating point
constant containing an exponent field that begins with the letter
d. A real ("single precision") constant is any other floating
point constant. A real or long real constant may be preceded
by a plus or minus sign. The following are valid real constants:

17.3
-.4
7.9e-6 (
14e9 (

7.9 x w-6)
1.4 x lQIO)

(_... The following are valid long real constants

7.9d-6 (7.9 X JQ-6)
5d3

11-11

EFL

A character constant is a quoted string.

5.3 Variables

A variable is a quantity with a name and a location. At any
particular time the variable may also have a value. A variable
is said to be undefined before it is initialized or assigned its first
value.

Each variable has certain attributes:

1. Storage Class

2. Scope

3. Precision

5.3.1 Storage Class

A variable's storage class is the association of its name and its
location. A storage class can either be transitory or permanent.

• Transitory association is achieved when arguments
are passed to procedures.

• Other associations are considered permanent or
static.

5.3.2 Scope of Names

The scope of a variable may be either global or local.

1. The names of common areas are global, and global vari­
ables may be used anywhere in the program.

2. All other names are considered local to the block in which
they are declared.

5.3.3 Precision

Floating point variables are either of normal or long precision.
Normal precision is 32 bits; long precision is 64 bits. This attri­
bute may be stated independently of the basic type.

11-12

EFL

5.4 Arrays

It is possible to declare rectangular arrays (of any dimension) of
values of the same type. The index set is always a cross­
product of intervals of integers. The tower and upper bounds
of the intervals must be constants for arrays that are local or
common. A formal argument array may have intervals that are
of length equal to one of the other formal arguments. An ele­
ment of an array is denoted by the array name followed by a
parenthesized comma-separated list of integer values, each of
which must lie within the corresponding interval. The intervals
may include negative numbers. Entire arrays may be passed as
procedure arguments or in input/output lists, or they may be
initialized; all other array references must be to individual ele­
ments.

S.S Structures

It is possible to define new types which are made up of ele·
ments of other types. The compound object is known as a
structure; its constituents are called members of the structure.
The structure may be given a name, which acts as a type name
in the remaining statements within the scope of its declaration.
The elements of a structure may be of any type (including pre­
viously defined structures), or they may be arrays of such
objects. Entire structures may be passed to procedures or be
used in input/output lists; individual elements of structures
may be referenced. The uses of structures will be detailed
below. The following structure might represent a symbol table:

struct tableentry
[

character(8) name
integer hashvalue
integer numberofelements
field(O:l) initialized, used, set
field(O:IO) type

11-13

EFL

6. Expressions

Expressions are syntactic forms that yield a value. An expres­
sion may have any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have
equal precedence and have higher precedence than operators on
later lines. The meanings of these operators are described in
the sections "Unary Operators" and "Binary Operators."

-> ..
• I unary+ ++
+
< <~ > >=

" "" I II
$ - +-

Examples of expressions are

a<b && b<c
-(a + sin(x)) I {5+cos(x)) .. 2

6.1 Primaries

&- 1- &&- 11-

Primaries are the basic elements of expressions. They include
constants, variables, array elements, structure members, pro­
cedure invocations, inpuVoutput expressions, coercions, and
sizes.

6.1.1 Constants
Constants are described in the section "Constants" under
"Data Types and Variables."

11-14

EFL

6.1.2 Variables

Scalar variable names are primaries. They may appear on the
left or the right side of an assignment. Unqualified names of
aggregates (structures or arrays) may appear only as procedure
arguments and in input/output lists.

6.1.3 Array Elements

An element of an array is denoted by the array name followed
by a parenthesized list of subscripts, one integer value for each
declared dimension:

a(S)
b(6, -3,4)

6.1.4 Structure Members

A structure name followed by a dot followed by the name of a
member of that structure constitutes a reference to that ele­
ment. If that element is itself a structure, the reference may be
further qualified.

a.b
x0).y(4).z(5)

6.1.5 Procedure Invocations

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-], ... , expression-n)

The procedurename is either the name of a variable declared
external or it is the name of a function known to the EFL
compiler (see "Known Functions" under "Procedures"), or it
is the actual name of a procedure, as it appears in a procedure
statement. If a procedurename is declared external and is an
argument of the current procedure, it is associated with the pro­
cedure name passed as actual argument; otherwise it is the
actual name of a procedure. Each expression in the above is

11-15

EFL

called an actual argument. Examples of procedure invocations
are

f(x)

workO
g(x, y+3, 'xx')

When one of these procedure invocations is to be performed,
each of the actual argument expressions is first evaluated. The
types, precisions, and bounds of actual and formal arguments
should agree. If an actual argument is a variable name, array
element, or structure member, the called procedure is permit·
ted to use the corresponding formal argument as the left side of
an assignment or in an input list~ otherwise it may only use the
value. After the formal and actual arguments are associated,
control is passed to the first executable statement of the pro­
cedure. When a return statement is executed in that pro­
cedure, or when control reaches the end statement of that pro·
cedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by
the attributes of the procedurename that are declared or implied
in the calling procedure, which must agree with the attributes
declared for the function in its procedure. In the special case of
a generic function, the type of the result is also affected by the
type of the argument. See "Procedures."

6.1.6 Input/Output Expressions

The EFL input/output syntactic forms may be used as integer
primaries that have a non-zero value if an error occurs during
the input or output.

6.1. 7 Coercions

An expression of one precision or type may be coerced, that is,
converted to another by an expression of the form

attributes (expression)

At present, the only attributes permitted are precision and basic
types. Attributes are separated by white space.

11-16

EFL

An arithmetic value of one type may be coerced to any other
arithmetic type. A character expression of one length may be
coerced to a character expression of another length. Logical
expressions may NOT be coerced to a nonlogical type.

As a special case, a quantity of complex or long complex type
may be constructed from two integer or real quantities by pass­
ing two expressions (separated by a comma) in the coercion.
Examples and equivalent values are

integer(5.3) - 5
long reai(S) - 5.0d0
complex(5,3) ""' 5+3i

Most conversions are done implicitly, since most binary opera­
tors permit operands of different arithmetic types. Explicit
coercions are of most use when it is necessary to convert the
type of an actual argument to match that of the corresponding

(formal parameter in a procedure calL

r

6.1.8 Sizes

There is a notation which yields the amount of memory
required to store a datum or an item of specified type:

sizeof (lejiside)
slzeof (attributes)

In the first case, te.liside can denote a variable, array, array ele­
ment, or structure member. The value of sizeof is an integer,
which gives the size in arbitrary units. If the size is needed in
terms of the size of some specific unit, this can be computed by
division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

11-17

EFL

The distance between consecutive elements of an array may not
equal sizeof because certain data types require final padding on
some machines. The lengthof operator gives this larger value,
again in arbitrary units. The syntax is

lengthof (te.tiside)
lengthof (auributes)

6.2 Parentheses

An expression surrounded by parentheses is itself an expres·
sian. A parenthesized expression must be evaluated before an
expression of which it is a part is evaluated.

6.3 Unary Operators

All of the unary operators in EFL are prefix operators. The
result of a unary operator has the same type as its operand.

6.4 Arithmetic

Unary + has no effect. A unary - yields the negative of its
operand.

The prefix operator + + adds one to its operand. The prefix
operator -- subtracts one from its operand. The value of
either expression is the result of the addition or subtraction.
For these two operators, the operand must be a scalar, array
element, or structure member of arithmetic type. As a side
effect, the operand value is changed.

6.4.1 Logical

The only logical unary operator is complement (~). This opera·
tor is defined by the equations

11-18

true = false
- false = true

r

r

EFL

6.5 Binary Operators

Most EFL operators have two operands, separated by the opera­
tor. Because the character set must be limited, some of the
operators are denoted by strings of two or three special charac­
ters. All binary operators except exponentiation are left associ­
ative.

6.5.1 Arithmetic

The binary arithmetic operators are

+ addition
subtraction

• multiplication
I division .. exponentiation

Exponentiation is right associative: a••b ... c - a••(b•*c)
a(II-"J, The operations have the conventional meanings:

8 + 2 - 10,
8 - 2 - 6,
8• 2 - 16,
8/2 - 4,
8 •• 2 = 82 = 64.

The type of the result of a binary operation A op B is deter­
mined by the types of its operands:

Type of B

Type of A i r I r c I c

I i r I r c I c
r r r I r c I c

1 r I r I r I r I c I c
c c c lc c I c

1c lc I c I c I c I c

11-19

EFL

i = integer
lr=long

r = real
real lc=

c - complex
long complex

If the type of an operand differs from the type of the result, the
calculation is done as if the operand were first coerced to the
type of the result. If both operands are integers, the result is of
type integer, and is computed exactly. (Quotients are truncated
toward zero, so 8/3 = 2.)

6.5.2 Logical

The two binary logical operations in EFL, and and or, are
defined by the truth tables:

A B A andB A or 8
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the
order of evaluation is specified. The expression

a && b

is evaluated by first evaluating a; if it is false then the expres·
sian is false and b is not evaluated; otherwise, the expression
has the value of b. The expression

a II b

is evaluated by first evaluating a; if it is true then the expres­
sion is true and b is not evaluated; otherwise, the expression
has the value of b. The other forms of the operators (&: for
and and I for or) do not imply an order of evaluation. With the
latter operators, the compiler may speed up the code by
evaluating the operands in any order.

11-20

EFL

6.6 Relational Operators

There are six relations between arithmetic quantities. These
operators are not associative.

EFL Operator Meaning

< < less than
<- " less than or equal to -- ~ equal to
-- "' not equal to
> > greater than
>~ ;. greater than or equal

Since the complex numbers are not ordered, the only relational
operators that may take complex operands are-- and-=. The
character collating sequence is not defined.

6. 7 Assignment Operators

All of the assignment operators are right associative. The sim­
ple form of assignment is

basic-/eft-side = expression

A basic-/eft-side is a scalar variable name, array element, or
structure member of basic type. This statement computes the
expression on the right side, and stores that value {possibly
after coercing the value to the type of the left side) in the loca­
tion named by the left side. The value of the assignment
expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each
binary arithmetic and logical operator. In each case, a op - b
is equivalent to a = a op b. (The operator and equal sign must
not be separated by blanks.) Thus, n+=2 adds 2 ton. The
location of the left side is evaluated only once.

11·21

EFL

6.8 Dynamic Structures

EFL does not have an address (pointer, reference) type. How­
ever, there is a notation for dynamic structures,

lejlside - > srructurename

This expression is a structure with the shape implied by struc­
turename but starting at the location of /ejiside. In effect, this
overlays the structure template at the specified location. The
fejfside must be a variable, array, array element, or structure
member. The type of the leftside must be one of the types in
the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) - > st.nth

refers to the nth member of the st structure starting at the i-th
element of the array place.

6.9 Repetition Operator

Inside of a list, an element of the form

integer·constant·expression $ constant·expression

is equivalent to the appearance of the expression a number of
times equal to the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

6.10 Constant Expressions

If an expression is built up out of operators (other than funcM
tions) and constants, the value of the expression is a constant,
and may be used anywhere a constant is required.

11-22

(
'

EFL

7. Declarations

Declarations statement describe the meaning, shape, and size of
named objects in the EFL language.

7.1 Syntax

A declaration statement is made up of attributes and variables.
Declaration statements are of two forms:

attributes variabfe·list
attributes { declarations }

In the first case, each name in the variable-list has the specified
attributes. In the second, each name in the declarations also
has the specified attributes. A variable name may appear in
more than one variable list, so long as the attributes are not
contradictory. Each name of a nonargument variable may be
accompanied by an initial value specification. The declarations
inside the braces are one or more declaration statements.
Examples of declarations are

integer k=2

long real b(7 ,3)

common(cname)
{
integer i
long real array(5,0:3) x, y
character(7) ch
}

7.2 Attributes

7.2.1 Basic Types

The following are basic types in declarations

11-23

EFL

logical
integer
fleld(m:n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant
expressions with the properties k > 0 and n > m.

7 .2.2 Arrays

The dimensionality may be declared by an array attribute

Each of the b; may either be a single integer expression or a
pair of integer expressions separated by a colon. The pair of
expressions form a lower and an upper bound; the single
expression is an upper bound with an implied lower bound of 1.
The number of dimensions is equal to n, the number of
bounds. All of the integer expressions must be constants. An
exception is permitted only if all of the variables associated with
an array declarator are formal arguments of the procedure; in
this case, each bound must have the property that upper -
lower + I is equal to a formal argument of the procedure.
{The compiler has limited ability to simplify expressions, but it
will recognize important cases such as (O:n -1).) The upper
bound for the last dimension {b,1) may be marked by an aster·
isk ("') if the size of the array is not known. The following
are legal array attributes:

11-24

array(5)
array(5, 1:5. -3:0)
array(5, "')
array(O:m-/, m)

EFL

7 .2.3 Structures

A structure declaration is of the form

struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were
the name of a type in the rest of its scope. Each name that
appears inside the declarations is a member of the structure, and
has a special meaning when used to qualify any variable
declared with the structure type. A name may appear as a
member of any number of structures, and may also be the
name of an ordinary variable, since a structure member name is
used only in contexts where the parent type is known. The fol­
lowing are valid structure attributes

struct xx
{
integer a, b
real x(S)
I

struct { xx z(J); character(S) y }

The last line defines a structure containing an array of three xxs
and a character string.

7 .2.4 Precision

Variables of floating point (real or complex) type may be
declared to be long to ensure they have higher precision than
ordinary floating point variables. The default precision is short.

7 .2.5 Common

Certain objects called common areas have external scope, and
may be referenced by any procedure that has a declaration for

(the name using a

common (commonareaname)

11-25

EFL

attribute. All of the variables declared with a particular com­
mon attribute are in the same block; the order in which they
are declared is significant. Declarations for the same block in
differing procedures must have the variables in the same order -/
and with the same types, precision, and shapes, though not
necessarily with the same names.

7 .2.6 External

If a name is used as the procedure name in a procedure invoca­
tion, it is implicitly declared to have the external attribute. If a
procedure name is to be passed as an argument, it is necessary
to declare it in a statement of the form

external I name D

If a name has the external attribute and it is a formal argument
of the procedure, then it is associated with a procedure
identifier passed as an actual argument at each call. If the name
is not a formal argument, then that name is the actual name of
a procedure, as it appears in the corresponding procedure state­
ment.

7.3 Variable List

The elements of a variable list in a declaration consist of a
name, an optional dimension specification, and an optional ini­
tial value specification. The name follows the usual rules. The
dimension specification is the same form and meaning as the
parenthesized Jist in an array attribute. The initial value
specification is an equal sign (=) followed by a constant
expression. If the name is an array, the right side of the equal
sign may be a parenthesized list of constant expressions, or
repeated elements or lists; the total number of elements in the
list must not exceed the number of elements of the array,
which are filled in column-major order.

7.4 The Initial Statement

An initial value may also be specified for a simple variable,
array, array element, or member of a structure using a

11-26

statement of the form

initial (var = val I

EFL

The var may be a variable name, array element specification, or
member of structure. The right side follows the same rules as
for an initial value specification in other declaration statements.

8. Executable Statements

Every useful EFL program contains executable statements, oth­
erwise it would not do anything and would not need to be run.
Statements are frequently made up of other statements. Blocks
are the most obvious case, but many other forms contain state­
ments as constituents.

To increase the legibility of EFL programs, some of the state­
ment forms can be broken without an explicit continuation. A
square (o) in the syntax represents a point where the end of a
line will be ignored.

8.1 Expression Statements

8.1.1 Subroutine Call

A procedure invocation that returns no value is known as a
subroutine call. Such an invocation is a statement. Examples
are

work(in, out)
run()

Input/output statements (see "Input/Output Statements"
under "Executable Statements") resemble procedure invoca­
tions but do not yield a value. If an error occurs the program

,! stops.

11-27

EFL

8.1.2 Assignment Statements

An expression that is a simple assignment(=) or a compound
assignment (+ = etc.) is a statement:

a = b
a = sin(x)/6
X *= y

8.2 Blocks

A block is a compound statement that acts as a single state­
ment. A block begins with a left brace, optionally followed by
declarations, optionally followed by executable statements, fol­
lowed by a right brace. A block may be used anywhere a state­
ment is permitted. A block is not an expression and does not
have a value. An example of a block is

integer i # this variable is unknown
outside the braces

big - 0
do i = l,n

if(big < a (i) J
big = a(i)

8.3 Test Statements

A test statemellf permits execution of another statement or
group of statements based on the outcome of a conditional
expression.

There are several forms of test statements:

1. if statements

2. if-else statements

3. select statements

11-28

EFL

8.3.1 If Statement

(The simplest of the test statements is the if statement, of form

if (logical·expression) 0 statement

First, the logical expression is evaluated; if it is true, then the
statement is executed. Otherwise statement will be skipped.

8.3.2 If-Else

A more general statement is of the form

if (logicaf·expression) 0 statement-! D
else 0 statement-]

Just as with the "if" statement, the logical expression is
evaluated and if the expression is true then statement-! is exe­
cuted, otherwise, statement-2 is executed. Either of the conse­
quent statements may itself be an if-else so a completely nested
test sequence is possible:

lf(x<y)
if(a<b)

k - I
else

k - 2
else

if(a<b)
m I

else
m 2

An else applies to the nearest preceding if which is not already
followed by an else.

(A more common use of the ~·it-else" test statement is the
sequential test:

11-29

EFL

if(x==l)
k ~ I

else if(x- = 3
k - 2

else
k - 3

x==S)

There may be any number of else if statements in an "if-else"
statement to test for several conditions, although if more than
2 else lfs are needed, a select statement is often used instead.

8.3.3 Select Statement

Much like the switch statement in the C shell or case state­
ments in many programming languages, a select statement is
used to direct the branching of a program based on the result of
a conditional or arithmetic expression. A select statement has
the general form:

select(expression) 0 block

Inside the block two special types of labels are recognized. A
prefix of the form

case I constant I :

marks the statement to which control is passed if the expression
in the select has a value equal to one of the case constants. If
the expression equals none of these constants, but there is a
label default inside the select, a branch is taken to that point;
otherwise the statement following the right brace is executed.

Once execution begins at a case or default label, it continues
until the next case or default is encountered.

11-30

r

select(x)
{
case 1:

k - 1
case 3,5:

k ~ 2
default:

k ~ 3

8.4 Loops

EFL

The loop constructs, (while, for, repeat, repeat-until and do),
provide an efficient way to repeat an operation or series of
operations. Termination of a loop is generally initiated by the
failure of a logical or iterative test statement. Although the
while loop is the simplest construct, and consequently the most
frequently used, each construct has its own strengths to be
exploited in a given application.

8.4.1 While Statement

This construct has the form

while (logicaf·expression) D statement

First, the logical-expression is evaluated; if it is true, statement is
executed, and the logical-expression is evaluated again. If
logical-expression is false, statement is not executed and program
execution continues at the next statement.

8.4.2 For Statement

The for statement is a more elaborate looping construct. It has
the form

for (initial-statement , 0 fogical-rxpression ,
D iteration-statement) D body-statement

Except for the behavior of the next statement (see "Branch
Statement" under "Executable Statements"), this construct is

11-31

EFL

equivalent to

initia f. statement
while (loxica/-expression)

I
bod_v-statement
it era t ion-statement
}

This form is useful for general arithmetic iterations, and for
various pointer-type operations. The sum of the integers from
I to 100 can be computed by the fragment

II = ()
for(i = /, i < = 100, i += I)

fl + = i

Alternatively, the computation could be done by the single
statement

for({n=O; i=l}, i< =100, (n+=i; ++i))

Note that the body of the for loop is a null statement in this
case. An example of following a linked list will be given later.

8.4.3 Repeat Statement

The statement

repeat 0 statemenl

executes the statement, then does it again, without any termi­
nation test. Obviously, a test inside the statement is needed to
stop the loop.

8.4.4 Repeat .•• Until Statement

The while loop performs a test before each iteration. The
statement

11-32

EFL

repeat D statement D until (logical·expression)

executes the statement, then evaluates the logical expression; if
the loKical expression is true the loop is complete; otherwise,
control returns to the statement. Thus, the body is always exe­
cuted at least once. The until refers to the nearest preceding
repeat that has not been paired with an until. In practice, this
appears to be the least frequently used looping construct.

8.4.5 Do Loop

The simple arithmetic progression is a very common one in
numerical applications. EFL has a special loop form for ranging
over an ascending arithmetic sequence

do variable = expression-/, expression-], expression-3
statement

The variable is first given the value expression-/. The statement
is executed, then expression-] is added to the variable. The
loop is repeated until the variable exceeds expression-]. If
expression-] and the preceding comma are omitted, the incre­
ment is taken to be I. The loop above is equivalent to

t2 = expression-]
t3 = expression-]
for{ variable =expression-/, variable< =t2, variable+ =r])

statemenl

(The compiler translates EFL do statements into FORTRAN
DO statements, which are usually compiled into excellent
code.) The do variable may not be changed inside of the loop,
and expression-/ must not exceed expression-]. The sum of the
first hundred positive integers could be computed by

II = 0
.r__. do i = 1, 100

II += i

11·33

EFL

8.5 Branch Statements

It is not considered good programming practice to use branch
statements if a loop construct can be used instead. However, if
you must use a branch statement, EFL provides a few for your
convenience.

8.5.1 Goto Statement

The most general, and most dangerous, branching statement is
the simple unconditional

goto label

After executing this statement, the next statement performed is
the one following the given label. Inside of a select the case
labels of that block may be used as labels, as in the following
example:

select(k)

case I:
error(7)

case 2:
k - 2
go to case 4

case 3:
k - 5
goto case 4

case 4:
fixup(k)
goto default

default:
prmsg("ouch")

If two select statements are nested, the case labels of the outer
select are NOT accessible from the inner one.

11-34

EFL

8.5.2 Break Statement

A safer statement is one which transfers control to the state·
ment following the current select or loop form. A statement of
this sort is almost always needed in a repeat loop:

repeat
{
do a computation
if(finished)
break
I

More general forms permit controlling a branch out of more
than one construct. For example:

break 3

transfers control to the statement following the third loop
and/ or select surrounding the statement.

It is possible to specify the type of construct to which control is
to be transferred, i.e. for, while, repeat, do, or select. For
example:

break while

breaks out of the first surrounding while statement. Either of
the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

8.5.3 Next Statement

The next statement causes the first surrounding loop statement
to go on to the next iteration: the next operation performed is
the test of a while, the iteration-statement of a for, the body of a

11-35

EFL

repeat, the test of a repeat ... until, or the increment of a do.
Elaborations similar to those for break are available:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

8.5.4 Return

The last statement of a procedure is followed by a return of
control to the caller. If it is desired to effect such a return from
any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the
function value is specified as an argument of the statement:

return (expression)

8.6 Input/Output Statements

EFL has two input statements (read and readbin), two output
statements (write and writebin), and three control statements
(endfile, rewind, and backspace). These forms may be used
either as a primary with a integer value or as a statement. If an
exception occurs when one of these forms is used as a state­
ment, the result is undefined but will probably be treated as a
fatal error. If they are used in a context where they return a
value, they return zero if no exception occurs. For the input
forms, a negative value indicates end-of-file and a positive
value an error. The input/output part of EFL very strongly
reflects the facilities of FORTRAN.

8.6.1 Input/Output Units

Each 1/0 statement refers to a "unit," identified by a small
positive integer. Two special units are defined by EFL, the
standard input unit and the standard output unit. These particular

11-36

--I

~

I

EFL

units are assumed if no unit is specified in an 1/0 transmission
statement.

The data on the unit are organized into records. These records
may be read or written in a fixed sequence, and each transmis­
sion moves an integral number of records. Transmission
proceeds from the first record until the end of.file.

8.6.2 Binary Input/Output

The readbin and wrltebin statements transmit data in a
machine-dependent but swift manner. The statements are of
the form

writebin(unit , binary-output-list)
readbin(unit , binary-input-list)

Each statement moves one unformatted record between storage
and the device. The unit is an integer expression. A binary­
output-list is an iolist (see below) without any format specifiers.
A binary-inpuf.list is an iolist without format specifiers in which
each of the expressions is a variable name, array element, or
structure member.

8.6.3 Formatted Input/Output

The read and write statements transmit data in the form of
lines of characters. Each statement moves one or more records
(lines). Numbers are translated into decimal notation. The
exact form of the lines is determined by format specifications,
whether provided explicitly in the statement or implicitly. The
syntax of the statements is

write(unit , formatted-output-list)
read(unit , formatted-input-list)

The lists are of the same form as for binary 1/0, except that
the lists may include format specifications. If the unit is omit­
ted, the standard input or output unit is used.

11-37

EFL

8.6.4 Iolists

An iolist specifies a set of values to be written or a set of vari­
ables into which values are to be read. An io/ist is a list of one
or more ioexpressions of the form

expression
{ iolisr }
do-spec(fication { iolist }

For formatted 1/0, an ioexpression may also have the forms

ioexpression : jOrmat-spec(/ier
: }Ormat-spec(fier

A do-spec(fication looks just like a do statement, and has a simi­
lar effect: the values in the braces are transmitted repeatedly
until the do execution is complete.

8.6.5 Formats

The following are permissible jOrmat-spec(/iers. The quantities
w, d, and k must be integer constant expressions.

i(w) integer with w digits

f(w,d)

e(w,d)

l(w)

c

c(Kl

s(k)

11-38

floating point number of w characters, d of them to
the right of the decimal point.

floating point number of w characters, d of them to
the right of the decimal point, with the exponent field
marked with the letter e

logical field of width w characters, the first of which is
t or f (the rest are blank on output, ignored on input)
standing for true and false respectively

character string of width equal to the length of the
datum

character string of width w

skip k lines

EFL

x(k) skip k spaces

use the characters inside the string as a FORTRAN
format

If no format is specified for an item in a formatted input/output
statement, a default form is chosen.

If an item in a list is an array name, then the entire array is
transmitted as a sequence of elements, each with its own for­
mat. The elements are transmitted in column-major order, the
same order used for array initializ.ations.

8.6.6 Manipulation Statements

The three input/output statements

backspace(unit)
rewind(unit)
endfile(unil)

,f look like ordinary procedure calls, but may be used either as
statements or as integer expressions which yield non-zero if an
error is detected. backspace causes the specified unit to back
up, so that the next read will re-read the previous record, and
the next write will over-write it. rewind moves the device to
its beginning, so that the next input statement will read the first
record. endfile causes the file to be marked so that the record
most recently written will be the last record on the file, and any
attempt to read past is an error.

9. Procedures

Procedures are the basic unit of an EFL program, and provide
the means of segmenting a program into separately compilable
and named parts.

9.1 Procedures Statement

Each procedure begins with a statement of one of the forms

11-39

EFL

procedure
auriblltes procedure pron•durename
auribwes procedure procedurename ()
arrribll/es procedure procedurename (I name])

The first case specifies the main procedure, where execution
begins. In the two other cases, the auribwes may specify preci­
sion and type, or they may be omitted entirely. The precision
and type of the procedure may be declared in an ordinary
declaration statement. If no type is declared, then the pro­
cedure is called a subrowine and no value may be returned for
it. Otherwise, the procedure is a function and a value of the
declared type is returned for each call. Each name inside the
parentheses in the last form above is called a ./imna/ ai"KIImenl of
the procedure.

9.2 End Statement

Each procedure terminates with a statement

end

9.3 Argument Association

When a procedure is invoked, the actual arguments are
evaluated. If an actual argument is the name of a variable, an
array element, or a structure member, that entity becomes
associated with the formal argument, and the procedure may
reference the values in the object, and assign to it. Otherwise,
the value of the actual is associated with the formal argument,
but the procedure may not attempt to change the value of that
formal argument.

If the value of one of the arguments is changed in the pro­
cedure, it is not permitted that the corresponding actual argu­
ment be associated with another formal argument or with a
common element that is referenced in the procedure.

11-40

EFL

9.4 Execution and Return Values

After actual and formal arguments have been associated, con­
trol passes to the first executable statement of the procedure.
Control returns to the invoker either when the end statement
of the procedure is reached or when a return statement is exe­
cuted. If the procedure is a function (has a declared type), and
a return(value) is executed, the value is coerced to the correct
type and precision and returned.

9.5 Known Functions

A number of functions are known to EFL, and need not be
declared. The compiler knows the types of these functions.
Some of them are xeneric; i.e., they name a family of functions
that differ in the types of their arguments and return values.
The compiler chooses which element of the set to invoke based
upon the attributes of the actual arguments.

9.5.1 Minimum and Maximum Functions

The generic functions are min and max. The min calls return
the value of their smallest argument; the max calls return the
value of their largest argument. These are the only functions
that may take different numbers of arguments in different calls.
If any of the arguments are long real then the result is long
real. Otherwise, if any of the arguments are real then the
result is real; otherwise all the arguments and the result must
be Integer. Examples are

min(5, x, -3.20)
max(i, z)

9.5.2 Absolute Value

The abs function is a generic function that returns the magni~
tude of its argument. For integer and real arguments the type

.r- of the result is identical to the type of the argument; for com~
plex arguments the type of the result is the real of the same
precision.

11-41

EFL

9.5.3 Elementary Functions

The following generic functions take arguments of real, long
real, or complex type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

In addition, the
real arguments:

sine function
cosine function
exponential function (ex).
natural (base e) logarithm
common (base 10) logarithm
square root function (@sqrt x@).

following functions accept only real or long

a tan
atan2

atan(x) = fait t x
atan2(x,y) = ratr.i x~v

9.5.4 Other Generic Functions

The sign function takes two arguments of identical type. The
mod function yields the remainder of its first argument when
divided by its second.

sign(x,y) = sgn(v)lxl.
mod(x,y)

These functions accept integer and real arguments.

10. Atavisms

The following constructs are included to ease the conversion of
old FORTRAN or Ratfor programs toEFL.

10.1 Escape Lines

In order to make use of nonstandard features of the local FOR­
TRAN compiler, it is occasionally necessary to pass a particular
line through to the EFL compiler output. Such a line is called
an escape line and must begin with a percent sign ("%").
Escape lines are copied through to the output without change,

11-42

EFL

except that the percent sign is removed. Inside of a procedure,
each escape line is treated as an executable statement. If a
sequence of lines constitute a continued FORTRAN statement,
they should be enclosed in braces.

10.2 Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work(17)

10.3 Obsolete Keywords

The following keywords are recognized as synonyms of EFL
keywords:

FORTRAN EFL

double precision long real
function procedure
subroutine procedure (untyped)

10.4 Numeric Labels

Standard statement labels are identifiers. A numeric (positive
integer constant) label is also permitted; the colon is optional
following a numeric label.

10.5 Implicit Declarations

If a name is used but does not appear in a declaration, the EFL
compiler gives a warning and assumes a declaration for it. If it
is used in the context of a procedure invocation, it is assumed
to be a procedure' name; otherwise it is assumed to be a local
variable defined at nesting level 1 in the current procedure.
The assumed type is determined by the first letter of the name.
The association of letters and types may be given in an implicit
statement, with syntax

implicit (letter-list) type

11-43

EFL

where a kller-lisr is a list of individual letters or ranges (pair of
letters separated by a minus sign). If no implicit statement
appears, the following rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

10.6 Computed Goto

FORTRAN contains an indexed multi-way branch; this facility
may be used in EFL by the computed goto:

goto (I label I), expression

The expression must be of type integer and be positive but be
no larger than the number of labels in the list. Control is
passed to the statement marked by the label whose position in
the list is equal to the expression.

10.7 Goto Statement

In unconditional and computed goto statements, it is permissi­
ble to separate the go and to words, as in

go to xyz

10.8 Dot Names

FORTRAN uses a restricted character set, and represents cer­
tain operators by multi-character sequences. There is an
option, dots=on (see "Compiler Options"), which forces the
compiler to recognize the forms in the second column below:

< .lt.
<~ .le.
> .gt.
>~ .ge .

• eq •
• ne .

& • and.
I .or •
&& . andand.

11-44

II

true
fri~lse

.oror .

. not .

. true.

.false.

EFL

In this mode, no structure element may be named It, le, etc.
The readable forms in the left column are always recognized.

10.9 Complex Constants

A complex constant may be written as a parenthesized list of
real quantities, such as

The preferred notation is by a type coercion,

complex0.5, 3.0)

(10.10 Function Values

The preferred way to return a value from a function in EFL is
the return (value) construct. However, the name of the func­
tion acts as a variable to which values may be assigned; an ordi­
nary return statement returns the last value assigned to that
name as the function value.

10.11 Equivalence

A statement of the form

declares that each of the vi starts at the same memory location.
Each of the vi may be a variable name, array element name, or

(.---. structure member.

11-45

EFL

10.12 Minimum and Maximum Functions

There are a number of non-generic functions in this category,
which differ in the required types of the arguments and the
type of the return value. They may also have variable numbers
of arguments, but all the arguments must have the same type.

FUNCTION ARGUMENT TYPE RESULT TYPE

aminO integer real
aminl real real
minO integer integer
minl real integer
dminl long real long real
amaxO integer real
amaxl real real
maxO integer integer
maxi real integer
dmaxl long real long real

11. Compiler Options

A number of options can be used to control the output and to
tailor it for various compilers and systems. The defaults chosen
are conservative, but it is sometimes necessary to change the
output to match peculiarities of the target environment.

Options are set with statements of the form

option I opt I

where each opt is of one of the forms

option name
optionname - optionva/ue

The optionva/ue is either a constant (numeric or string) or a
name associated with that option. The two names yes and no
apply to a number of options.

11-46

c

EFL

11.1 Default Options

Each option has a default setting. It is possible to change the
whole set of defaults to those appropriate for a particular
environment by using the system option. At present, the only
valid values are system=unix and system=gcos.

11.2 Input Language Options

The dots option determines whether the compiler recognizes
.It. and similar forms. The default setting is no.

11.3 Input/Output Error Handling

The ioerror option can be given three values: none means that
none of the 1/0 statements may be used in expressions, since
there is no way to detect errors. The implementation of the
ibm form uses ERR= and END= clauses. The implementa­
tion of the fortran77 form uses lOST AT= clauses.

(""" 11.4 Continuation Conventions

By default, continued FORTRAN statements are indicated by a
character in column 6 (Standard FORTRAN). The option
continue=columnl puts an ampersand (&) in the first column
of the continued lines instead.

11.5 Default Formats

If no format is specified for a datum in an iolist for a read or
write statement, a default is provided. The default formats can
be changed by setting certain options

OPTION TYPE

iformat integer
rformat real
dformat long real
zformat complex
zdformat long complex
lformat logical

The associated value must be a FORTRAN format, such as

11-47

EFL

option rformat=f22.6

11.6 Alignments and Sizes

In order to implement character variables, structures, and the
slzeof and lengthof operators, it is necessary to know how
much space various FORTRAN data types require, and what
boundary alignment properties they demand. The relevant
options are

FORTRAN SIZE ALIGNMENT
TYPE OPTION OPTION

integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical !size I align

The sizes are given in terms of an arbitrary unit; the alignment
is given in the same units. The option charperint gives the
number of characters per integer variable.

11.7 Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard
input and output units. The default values are ftnin=S and
ftnout=6.

11.8 Miscellaneous Output Control Options

Each FORTRAN procedure generated by the compiler will be
preceded by the value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if
holllncall =no is specified.

11-48

'-

EFL

No Hollerith strings will be passed as subroutine arguments if
hollinc_ll =no is specified.

The FORTRAN statement numbers normally start at 1 and
increase by I. It is possible to change the increment value by
using the deltastno option.

12. Examples

In order to show the flavor or programming in EFL, we present ·
a few examples. They are short, but show some of the con·
venience of the language.

12.1 File Copying

The following short program copies the standard input to the
standard output, provided that the input is a formatted file con­
taining lines no longer than a hundred characters.

procedure # main program
characterOOO) line

while(read(, line) 0)
write(, line)

end

Since read returns zero until the end of file (or a read error),
this program keeps reading and writing until the input is
exhausted.

12.2 Matrix Multiplication

The following procedure multiplies the m x n matrix a by the 11

x p matrix b to give the m x p matrix c. The calculation obeys
the formula c1; = :E alt.. ht.._r

11-49

EFL

procedure matmul(a, b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do i = l,m
do j = l,p

{

end

c(ij) = 0
do k = l,n

c(ij) + = a(i,k) • b(kj)

12.3 Searching a Linked List

Assume we have a list of pairs of numbers (x, y). The list is
stored as a linked list sorted in ascending order of x values.
The following procedure searches this list for a particular value
of x and returns the corresponding y value.

11-50

~

I

define LAST 0
define NOTFOUND -I

integer procedure val Wst, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
l list(•)

integer first, p, arg

for(p = first , p-=LAST && list(p).x<=x ,
p = list(p).nextindex)
iWist(p).x == x)

return(list(p).y)

return(NOTFOUND)
end

EFL

The search is a single for loop that begins with the head of the
list and examines items until either the list is exhausted
(p= =LAST) or until it is known that the specified value is not
on the list (list(p).x > x). The two tests in the conjunction
must be performed in the specified order to avoid using an
invalid subscript in the list(p) reference. Therefore, the &&
operator is used. The next element in the chain is found by
the iteration statement p =list (p) .nextindex.

12.4 Walking a Tr ..

As an example of a more complicated problem, let us imagine
we have an expression tree stored in a common area, and that
we want to print out an infix form of the tree. Each node is
either a leaf (containing a numeric value) or it is a binary
operator, pointing to a left and a right descendant. In a recur­
sive language, such a tree walk would be implemented by the

11·51

EFL

following simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain
an explicit stack to keep track of the current state of the com­
putation. The following procedure calls a procedure outch to
print a single character and a procedure outval to print a value.

11-SZ

EFL

procedure walk (first) # print an expression tree

r integer first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

I
character (I) op
integer leftp, rightp
real val
} treeOOO) # array of structures

struct
I
integer nextstate
integer nodep
} stackframe(IOO)

define NODE
define STACK

tree(currentnode)
stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

initialize stack with root mode
stackdepth = 1
STACK.nextstate = DOWN
ST ACK.nodep = first

11-53

EFL

while(stackdepth > 0)

end

(
currentnode = STACK.nodep
select(STACK.nextstate)

(
case DOWN:

if(NODE.op = = " ") # a leaf
(
outval(NODE. val
stackdepth - = 1
I

else { # a binary operator node
outch("(")
ST ACK.nextstate = LEFT
stackdepth + = 1
ST ACK.nextstate DOWN
ST ACK.nodep = NODE.leftp
I

case LEFT:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth + = 1
STACK.nextstate = DOWN
ST ACK.nodep = NODE.rightp

case RIGHT:
outch(")")
stackdepth - = 1

13. Portability

One of the major goals of the EFL language is to make it easy
to write portable programs. The output of the EFL compiler is
intended to be acceptable to any Standard FORTRAN compiler
(unless the "fortran77" option is specified).

11-54

.r

EFL

13.1 Primitives

Certain EFL operations cannot be implemented in portable
FORTRAN, so a few machine-dependent procedures must be
provided in each environment.

13.1.1 Character String Copying

The subroutine eftasc is called to copy one character string to
another. If the target string is shorter than the source, the final
characters are not copied. If the target string is longer, its end
is padded with blanks. The calling sequence is

subroutine eflasc<a, Ia, b, lb)
integer a(..), Ia, b(•), lb

and it must copy the first lb characters from b to the first Ia
characters of a.

13.1.2 Character String Comparisons

The function eflcmc is invoked to determine the order of two
character strings. The declaration is

integer function eflcmc<a, Ia, b, !b)
integer a(*), Ia, b(*), lb

The function returns a negative value if the string a of length
Ia precedes the string b of length lb. It returns zero if the
strings are equal, and a positive value otherwise. If the strings
are of differing length, the comparison is carried out as if the
end of the shorter string were padded with blanks.

14. Differences Between Ratfor and EFL

There are a number of differences between Ratfor and EFL,
since EFL is a defined language while Ratfor is the union of the
special control structures and the lar.guage accepted by the
underlying FORTRAN compiler. Ratfor running over Standard
FORTRAN is almost a subset of EFL. Most of the features
described in the "Atavisms" are present to ease the conversion

11-55

EFL

of Ratfor programs to EFL.

There are a few incompatibilities:

1. The syntax of the for statement is slightly different
in the two languages. The three clauses are
separated by semicolons in Ratfor, but by commas
in EFL. The initial and iteration statements may be
compound statements in EFL because of this
change.

2. The input/output syntax is quite different in the two
languages, and there is no FORMAT statement in
EFL.

3. There are no ASSIGN or assigned GOTO statements
in EFL.

The major linguistic additions are:

• character data

• factored declaration syntax

• block structure

• assignment and sequential test operators

• generic functions

• data structures

EFL permits more general forms for expressions, and provides
a more uniform syntax. For example, EFL does not have the
restrictions on subscript or DO expressions forms as do FOR­
TRAN and Ratfor.

15. Compiler

15.1 Current Version

The current version of the EFL compiler is a two-pass transla­
tor written in portable C. It implements all of the features of

11-56

EFL

the language described above except for long complex
numbers.

15.2 Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line
and file name (if known) on which the error was detected.
Warnings are given for variables that are used but not explicitly
declared.

15.3 Quality of FORTRAN Produced

The FORTRAN produced by EFL is quite clean and readable.
To the extent possible, the variable names that appear in the
EFL program are used in the FORTRAN code. The bodies of
loops and test constructs are indented. Statement numbers are
consecutive. Few unneeded GOTO and CONTINUE state­
ments are used. It is considered a compiler bug if incorrect
FORTRAN is produced (except for escaped lines). The follow­
ing is the FORTRAN procedure produced by the EFL compiler
for the matrix multiplication example (See "Examples.")

subroutine matmuHa, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i = I, m

do 2 j = I, p
c(i, j) = 0
do I k = 1, n

c(i, j) = c(i, j) +a(i, k)*b(k, j)
I continue
2 continue
3 continue

end

11-57

EFL

11-58

The following is the procedure for the tree walk:

subroutine walk(first)
integer first
common /nodes/ tree
integer tree(4, 100)
real tree I (4, 100)
integer staame(2, 100), stapth, curode
integer canst 1 (I)
equivalence (treeO,l), treel(l,l))
data constl0)/4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = I
staameO, stapth) = 1
staame(2, stapth) = first
if (stapth .le. 0) goto 9

curode = staame(2, stapth)
goto 7

2 if (treeO, curode) .ne. canst! (l)) go to 3

c a leaf
call outval(treel (4, curode))

stapth = stapth-1
goto 4

3 call outchOhO
c a binary operator node

staame(l, stapth) 2
stapth = stapth + I
staame (I, stapth) I
staame(2, stapth) = tree(2, curode)

4 goto 8
5 call outch(treeO, curode))

staame (I, stapth) = 3
stapth = stapth + 1
staame(l, stapth)
staame(2, stapth) = treeO, curode)

6

7

goto 8
call outch (1 h))
stapth = stapth-1
goto 8
if (staameO. stapth) .eq. 3) goto 6
if (staameO. stapth) .eq. 2) goto 5
if (staameO. stapth) .eq. l) goto 2

8 continue
goto 1

9 continue
end

16. Constraints on EFL

EFL

Although FORTRAN can be used to simulate any finite compu­
tation, there are realistic limits on the generality of a language
that can be translated into FORTRAN. The design of EFL was
constrained by the implementation strategy. Certain of the res­
trictions are petty (six character external names), but others are
sweeping (lack of pointer variables). The following paragraphs
describe the major limitations imposed by FORTRAN.

16.1 External Names

External names (procedure and COMMON block names) must
be no longer than six characters in FORTRAN. Further, an
external name is global to the entire program. Therefore, EFL
can support block structure within a procedure, but it can have
only one level of external name if the EFL procedures are to be
compilable separately, as are FORTRAN procedures.

16.2 Procedure Interface

The FORTRAN standards, in effect, permit arguments to be
passed between FORTRAN procedures either by reference or
by copy-in/copy-out. This indeterminacy of specification shows
through into EFL. A program that depends on the method of
argument transmission is illegal in either language.

11-59

EFL

There are no procedure-valued variables in FORTRAN. That
is, a procedure name may ONLY be passed as an argument or
be invoked - it cannot be stored.

16.3 Pointers

The most grievous problem with FORTRAN is its lack of a
pointer-like data type. The implementation of the compiler
would have been far easier, and the language itself simplified
considerably, if certain cases could have been handled by
pointers. There are several ways of "simulating" pointers by
using subscripts, but this raises problems of external variables
and initialization.

16.4 Recursion

FORTRAN procedures are not recursive, so it was not practical
to permit EFL procedures to be recursive. As in the case of
pointers, recursion may be simulated in EFL, but not without
considerable effort.

16.5 Storage Allocation

The definition of FORTRAN does not specify the lifetime of
variables. It would be possible but cumbersome to implement
stack or heap storage disciplines by using COMMON blocks.

11-60

Chapter 12: LINT

(CONTENTS·

-
I. Introduction I

1.1 Usage I
1.2 Options 2

2. Types of Messages 5
2.1 Unused Variables and Functions 5
2.2 Set/Used Information 7
2.3 Flow of Control 7
2.4 Function Values 8
2.5 Type Checking 10
2.6 Type Casts • . 11
2.7 Nonportable Character Use 12
2.8 Assignments of "longs•• to "ints" 12
2.9 Strange Constructions 13

r 2.10 Old Syntax • 14
2.11 Pointer Alignment 15

'- 2.12 Multiple Uses and Side Effects 16

c

~ i -

Chapter 12

LINT-

A C PROGRAM CHECKER

1. Introduction

LINT

The C program checker, lint, can be used to detect bugs,
obscurities, inconsistencies and portability of C programs. It is
generally stricter than the C compiler, which accepts construc­
tions without complaint that lint considers wasteful or error­
prone. The lint program is also much stricter with regard to
the C language type rules. Also, lint accepts multiple files and
library specifications and checks them for consistency.

In addition to the many thorough checking mechanisms them­
selves, lint offers the facility of suppressing them if they are
not necessary for a given application.

1.1 Usage

The lint command has the form:

lint [options] files ... library-descriptors ...

• options are optional flags to control lint checking
and messages

• "files" are the files to be checked by lint. Natur­
ally, files containing C language programs must end
with a .c suffix since this is mandatory for both lint
and the C compiler.

• library-descriptors are the names of libraries to be
used in checking the program.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are
defined on a library file, but are not used on a source file, do

12-1

LINT

NOT result in messages.

The lint program does not simulate a full library search algo­
rithm and will print messages if the source files contain a
redefinition of a library routine.

1.2 Options

When more than one option is used, they should be combined
into a single argument, such as, - ab or - xha.

The options that are currently supported by the lint program
are:

-a

-b

Use this option to suppress messages concerning
the assignment of "long" values to variables
which are not "long." This option is often useful
as there are a number of legitimate reasons for
assigning "longs" to "ints."

Use this option to suppress messages concerning
"break" statements which are unreachable. For
example, programs generated by yacc and espe­
cially lex may have hundreds of unreachable break
statements. If the C compiler optimizer were
used, these unreached statements would be of lit­
tle importance, but the resulting messages would
clutter up the lint output. In this case, the -b
option is especially useful.

- c This option is no longer available.

- h Use this option only to suppress the use of
"heuristics." Heuristics is used by default to
check for wasteful or error-prone constructions
and to detect bugs. For example, by default lint
prints messages about variables which 8re declared
in inner blocks in a way that conflicts with their
use in outer blocks. Though this construction is
considered "legal," it remains bad programming
style, and frequently a bug.

12-2

r
'

-ly

LINT

Use this option to specify libraries you wish
included and checked by lint. The source code is
tested for compatibility with these libraries. This
is done by accessing library description files whose
names are constructed from the library arguments.
These files MUST all begin with the comment:

I• LINTLIBRARY •/

This comment must then be followed by a series
of dummy function definitions. The critical parts
of these definitions are:

• the declaration of the function return
type,

• whether the dummy function returns a
value, and

• the number and types of arguments to
the function.

The VARARGS and ARGSUSED comments can
be used to specify features of the library func­
tions.

- n Use this option to suppress checking for compati­
bility with either the standard or the portable lint
library. In effect, this option supresses ALL
library checking.

-0 name Use this option to create a lint library from input
files named llib-lname.ln.

-p

-u

Use this option to check a program's portability to
other dialects of C language. This option checks a
file containing descriptions of standard library rou­
tines which are expected to be portable.

Use this option to suppress messages concerning
function and external variables which are either
used and not defined or defined and not used.

12-3

LINT

-v

The comment:

I• VARARGS •/

can be used to suppress messages about variable
number of arguments in calls to a function. The
comment should be added before the function
definition. In some cases, it is desirable to check
the first several arguments and leave the later
arguments unchecked. This can be done with a
digit giving the number of arguments which
should be checked. For example:

I• VARARGS2 •I

will cause ONLY the first two arguments to be
checked.

When lint is applied to some but not all files out
of a collection which are to be loaded together,
information about unused or undefined variables
is more distracting than helpful. In this case,
many of the functions and variables defined may
not be used. Conversely, many functions and
variables defined elsewhere may be used. The -u
option is especially useful to suppress the spurious
messages which might otherwise appear.

Use this option to suppress messages concerning
unused function arguments. To suppress such
messages for one function only, place the follow­
ing comment in the program before that function:

I• ARGSUSED •/

-x Use this option to suppress messages concerning
variables referred to by external declarations but
never used.

By default, lint checks the programs it is given against a stan­
dard library file which contains descriptions of the programs
which are normally loaded when a C language program is run.

12-4

LINT

When the - p option is used, another file is checked containing
descriptions of the standard library routines which are expected
to be portable across various machines. The - n option can be
used to suppress all library checking.

2. Types of Messages

The following paragraphs describe the major categories of mes·
sages printed by lint.

2.1 Unused Variables and Functions

As sets of programs evolve and develop, previously used vari­
ables and arguments to functions may become unused. It is
not uncommon for external variables or even entire functions
to become unnecessary and yet not be removed from the
source. These types of errors rarely cause working programs to
fail, but are a source of inefficiency and make programs harder
to understand and change. Also, information about such
unused variables and functions can occasionally serve to dis­
cover bugs.

The lint program prints messages about variables and functions
which are defined but not otherwise mentioned.

It is possible to suppress messages regarding variables which are
declared through explicit extern statements but are never refer­
enced. The statement:

extern double sin 0;

will evoke no comment if sin is never used, providing the -x
option is used. (Note: this agrees with the semantics of the C
compiler.)

In some cases, these unused external declarations might be of
some interest, in which case you can use lint without the - x
option.

12-5

LINT

Certain styles of programming require many functions to be
written with similar interfaces. Frequently, some of the argu­
ments may be unused in many of the calls. The -v option is
available to suppress the printing of messages about unused
arguments.

When -v is in effect, no messages are produced about unused
arguments including for those arguments which are unused and
also declared as register arguments. This can be considered an
active (and preventable) waste of the register resources of the
machine.

Messages about unused arguments can be suppressed for one
function by adding the comment:

I• ARGSUSED •/

to the program before the function. This has the effect of the
- v option for only one function. Also, the comment:

I• VARARGS •/

can be used to suppress messages about variable number of
arguments in calls to a function. The comment should be
added before the function definition. In some cases, it is desir­
able to check the first several arguments and leave the later
arguments unchecked. This can be done with a digit giving the
number of arguments which should be checked. For example:

/ .. V ARARGS2 •I

will cause ONLY the first two arguments to be checked.

There is one case where information about unused or
undefined variables is more distracting than helpful:

when lint is applied to some but not all files out of a collection
which are to be loaded together.

12-6

LINT

In this case, many of the functions and variables defined may
not be used. Conversely, many functions and variables defined
elsewhere may be used. The -u option may be used to
suppress the spurious messages which might otherwise appear.

2.2 Set/Used Information

The lint program attempts to detect cases where a variable is
used before it is set. The lint program detects local variables
(automatic and register storage classes) whose first use appears
earlier than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data-dependent
fashion.

The restriction to the physical appearance of variables in the file
makes the algorithm very simple and quick to implement since
the true flow of control need not be discovered. It does mean
that lint can print messages about some programs which are
legal, but these programs would probably be considered bad on
stylistic grounds. Because static and external variables are ini­
tialized to zero, no meaningful information can be discovered
about their uses. The lint program does deal with initialized
automatic variables.

The set/used information also permits recognition of those
local variables which are set and never used. These form a fre­
quent source of inefficiencies and may also be symptomatic of
bugs.

2.3 Flow of Control

The lint program attempts to detect unreachable portions of the
programs which it processes. It will print messages about unla­
beled statements immediately following goto, break, continue
or return statements. An attempt is made to detect loops
which can never be left at the bottom and to recognize the spe­
cial cases while (I) and for(;;) as infinite loops.

12-7

LINT

The lint program also prints messages about loops which can­
not be entered at the top. Some valid programs may have such
loops which are considered to be bad style at best and bugs at
worst.

The lint program has no way of detecting functions which are
called and never returned. Thus, a call to exit may cause an
unreachable code which lint does NOT detect. The most seri­
ous effects of this are in the determination of returned function
values (see the section on "Function Values"). If a particular
place in the program cannot be reached but it is not apparent to
lint, the comment

I• NOTREACHED •/

can be added at the appropriate place. This comment will
inform llnt that a portion of the program cannot be reached.

The lint program will not print a message about unreachable
break statements if given the - b option. Programs generated
by yacc and especially lex may have hundreds of unreachable
break statements. The -0 option in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these
unreached statements are of little importance. There is typi­
cally nothing the user can do about them, and the resulting
messages would clutter up the lint output. If these messages
are desired, lint can be invoked without the - b option.

2.4 Function Values

Sometimes functions return values that are never used. Some­
times programs incorrectly use function "values" that have
never been returned. The lint program addresses this problem
in a number of ways.

Locally, within a function definition, the appearance of both

return (expr) ;

12-8

LINT

and

(return;

is cause for alarm. The lint program will give the message:

function name contains return(e) and return

The most serious difficulty with this is detecting when a func­
tion return is "implied" when the control flow of a program
reaches the end of the function. For example:

f (a) I
if (a) return (3);
g 0;

In this example, if the result of "a" is false, /will call g and
then return with no defined return value. This will trigger a
message from lint. If g, like exit, never returns, the message
will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered
by this feature.

On a global scale, lint detects cases where a function returns a
value that is sometimes or never used. When the value is
never used, it may constitute an inefficiency in the function
definition. When the value is sometimes unused, it may
represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious prob-

,/""' tern.
'

12-9

LINT

2.5 Type Checking

The lint program enforces the type checking rules of C
language more strictly than the compilers do. The additional
checking is in four major areas:

• Across certain binary operators and implied assign-
ments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balanc­
ing between types of the operands. The assignment, condi­
tional (? :) , and relational operators have this property. The
argument of a return statement and expressions used in initiali­
zation suffer similar conversions. In these operations, char,
short, int, long, unsigned, float and double types may be
freely intermixed.

The types of pointers MUST agree exactly except that arrays of
x's can, of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure refer­
ences, the left operand of the - > be a pointer to structure,
the left operand of the . be a structure, and the right operand
of these operators be a member of the structure implied by the
left operand. S.imilar checking is done for references to unions.

Strict rules apply to function argument and return value match­
ing. The types ftoat and double may be freely matched, as may
the types char, short, int and unsigned. Also, pointers can be
matched with the associated arrays. Aside from this, all actual
arguments must agree in type with their declared counterparts.

12-10

r

LINT

With enumerations, checks are made that enumeration vari­
ables or members are not mixed with other types or other
enumerations and that the only operations applied are ... , ini­
tialization, --, ! = and function arguments and return values.

If it is desired to turn off strict type checking for an expression,
the comment

I• NOSTRICT "/

should be added to the program immediately before the expres­
sion. This comment will prevent strict type checking for only
the next line in the program.

2.6 Type Casts

The type cast feature in C language was introduced largely as an
aid to producing more portable programs. Consider the assign­
ment

p = 1 ;

where p is a character pointer. The lint program will print a
message as a result of detecting this. Consider the assignment

p = (char oc)l ;

in which a cast has been used to convert the integer to a char·
acter pointer. The programmer obviously had a strong motiva·
tion for doing this and has clearly signaled his intentions. It
seems harsh for lint to continue to print messages about this.
On the other hand, if this code is moved to another machine,
such code should be looked at carefully. The -c flag controls
the printing of comments about casts. When -c is in effect,
casts are treated as though they were assignments subject to
messages. Otherwise, all legal casts a;·e passed without com·
ment - no matter how strange the type mixing seems to be.

12-11

LINT

2.7 Nonportable Character Use

On some systems, characters are signed quantities with a range
from -128 to 127. On other C language implementations,
characters take on only positive values. Thus, lint will print
messages about certain comparisons and assignments as being
illegal or nonportable. For example:

char c;

if((c = getcharO) < 0) ...

will work on one machine but will fail on machines where char·
acters always take on positive values. The real solution is to
declare c as an integer since getchar is actually returning integer
values. In any case, lint will print the message "nonportable
character comparison.''

A similar issue arises with bit fields. When assignments of con­
stant values are made to bit fields, the field may be too small to
hold the value. This is especially true because on some
machines bit fields are considered as signed quantities. While it
may seem logical to consider that a two-bit field declared of
type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned

2.8 Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which
will truncate the contents. This may happen in programs which
have been incompletely converted to use typedefs. When a
typedef variable is changed from int to long, the program can
stop working because some intermediate results may be
assigned to ints, which are truncated. Since there are a number
of legitimate reasons for assigning longs to ints, the detection
of these assignments is disabled by the -a option. However, if
using the - p option to detect possible portability problems,
lint may print the message, "warning: conversion from long
may lose accuracy," in spite of the use of the -a option.

12-12

LINT

2.9 Strange Constructions

Several perfectly legal, but somewhat strange, constructions are
detected by lint. The messages hopefully encourage better
code quality, clearer style, and may even point out bugs. The
- h option is used to suppress the majority of these checks.

For example:

•p++ ;

the • does nothing. This provokes the message "null effect"
from lint. For example:

unsigned x;
if(x<O) ...

results in a test that will never succeed. For another example:

/__. if(x>O)

(~

is equivalent to

if(x!= 0)

which may NOT be the intended action. The lint program will
print the message "degenerate unsigned comparison" in these
cases. If a program contains something similar to

if(l!~O) ...

lint will print the message "constant in conditional context"
since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator pre­
cedence. Bugs which arise from misunderstandings about the
precedence of operators can be accentuated by spacing and for­
matting, making such bugs extremely hard to find. For exam­
ple:

12-13

LINT

if(x&077 ~~ 0) ...

o•
x<<2 + 40

probably do NOT do what was intended. The best solution is
to parenthesize such expressions, and lint encourages this by
an appropriate message.

When the - h option has not been used, lint prints messages
about variables which are redeclared in inner blocks in a way
that conflicts with their use in outer blocks. Although this is
considered "legal," it remains bad style, usually unnecessary
and frequently a bug.

2.10 Old Syntax

Several forms of older syntax are now illegal. These fall into
two classes -

1. assignment operators and

2. initialization.

The older forms of assignment operators (e.g., - +, ... -, ...)
could cause ambiguous expressions. For example:

a =-1;

could be taken as either

a=- 1;

o•
a= -1

12-14

(
'

-. __

LINT

The situation is especially perplexing if this kind of ambiguity
arises as the result of a macro substitution. The newer and pre·
ferred operators (e.g., + =, --, .. .) have no such ambigui­
ties. To encourage the abandonment of the older forms, lint
prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language
allowed

int xi;

to initialize x to 1. This also caused syntactic difficulties. For
example:

intx(-1);

looks somewhat like the beginning of a function definition:

int x (y) { , ..

and the compiler must read past x in order to determine the
correct meaning. Again, the problem is even more perplexing
when the initializer involves a macro. The current syntax
places an equals sign between the variable and the initializer.
For example:

intx=-1;

This is free of any possible syntactic ambiguity.

2.11 Pointer Alignment

Certain pointer assignments may be reasonable on some
machines and illegal on others due entirely to alignment restric­
tions. The lint program tries to detect cases where pointers are
assigned to other pointers and such alignment problems might
arise. The message "possible pointer alignment problem"
results from this situation.

12-15

LINT

2.12 Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For exam­
ple, on machines Oik.e the PDP-11) in which the stack runs
backwards, function arguments will probably be best evaluated
from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as
arguments of other functions may or may not be treated simi­
larly to ordinary arguments. Similar issues arise with other
operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular
machine not be unduly compromised, the C language leaves
the order of evaluation of complicated expressions up to the
local compiler. In fact, the various C compilers have consider­
able differences in the order in which they will evaluate compli­
cated expressions. In particular, if any variable is changed by a
side effect and also used elsewhere in the same expression, the
result is explicitly undefined.

The lint program checks for the important special case where a
simple scalar variable is affected. For example:

alii ~ b[i+ +];

will cause lint to print the message "warning: i evaluation order
undefined" in order to call attention to this condition.

12·16

c

c

Chapter 13: SDB

CONTENTS

1. Introduction

2. Usage . • • • .
2.1 Printing a Stack Trace
2.2 Examining Variables .

3. Display and Manipulation .
3.1 Displaying the Source File
3.2 Changing the Source File or Function
3.3 Changing the Current Line in the Source

File • • • • • • • • • •

4. A Controlled Testing Environment .
4.1 Setting and Deleting Breakpoints
4.2 Running the Program
4.3 Calling Functions • • • •

S. Machine Language Debugging
5.1 Displaying Machine Language

Statements • • . •
5.2 Manipulating Registers
5.3 Other Commands . •

LIST OF FIGURES

Figure 13.1. Input File Used for SDB Example

Figure 13.2. Example of SOB Usage • • . .

. i -

I

I
5
6

9
10
10

11

11
12
13
15

15

16
16
17

4

5

r
'

Chapter 13

SDB-

SYMBOLIC DEBUGGING PROGRAM

1. Introduction

SDB

This chapter describes the symbolic debugger sdb(l) as imple­
mented for C language and Fortran 77 programs on the
UniPius+® Operating System. The sdb program is useful both
for examining core images of aborted programs and for provid­
ing an environment in which execution of a program can be
monitored and controlled.

The sdb program allows interaction with a debugged program at
the source language level. When debugging a core image from
an aborted program, sdb reports which line in the source pro­
gram caused the error and allows all variables to be accessed
symbolically and to be displayed in the correct format.

Breakpoints may be placed at selected statements or the pro­
gram may be single stepped on a line-by-line basis. To facili­
tate specification of lines in the program without a source list­
ing, sdb provides a mechanism for examining the source text.
Procedures may be called directly from the debugger. This
feature is useful both for testing individual procedures and for
calling user-provided routines which provided formatted prin­
tout of structured data.

z. Usage

In order to use sdb to its full capabilities, it is necessary to
compile the source program with the - g option. This causes
the compiler to generate additional information about the vari­
ables and statements of the compiled program. When the -g
option has been specified, sdb can be used to obtain a trace of
the called functions at the time of the abort and interactively

13-l

SDB

display the values of variables.

A typical sequence of shell commands for debugging a core
image is

$ cc - g prgm.c - o prgm
$ prgm
Bus error - core dumped
$ sdb prgm
main:25: x[i] = 0;
•

The program prgm was compiled with the - g option and then
executed. An error occurred which caused a core dump. The
sdb program is then invoked to examine the core dump to
determine the cause of the error. It reports that the bus error
occurred in function main at line 25 (line numbers are always
relative to the beginning of the file) and outputs the source text
of the offending line. The sdb program then prompts the user
with an "' indicating that it awaits a command.

It is useful to know that sdb has a notion of current function
and current line. In this example, they are initially set to
"main" and "25", respectively.

In the above example, sdb was called with one argument,
prgm. In general, sdb takes three arguments on the command
line:

13-2

1. The first argument is the name of the executable file
to be debugged; it defaults to a.out when not
specified. Even with the new COFF format, the
executable file will be named a.out. However, sdb
will not work on old a.out format files. Only COFF
files may be used with sdb.

2. The second argument is the name of the core file,
defaulting to core;

3. The third
containing
debugged.

SOB

argument is the name of the directory
the source of the program being

The sdb program currently requires all source to reside in a sin­
gle directory. The default is the working directory. In the
example, the second and third arguments defaulted to the
correct values, so only the first was specified.

It is possible that the error occurred in a function which was
not compiled with the - g option. In this case, sdb prints the
function name and the address at which the error occurred.
The current line and function are set to the first executable line
in main. The sdb program will print an error message if main
was not compiled with the - g option, but debugging can con­
tinue for those routines compiled with the -g option.

The following is a typical example of sdb usage. The first
display, Figure 13.1, is the source file used to create the output
file used to illustrate the use of sdb. The second figure, Figure
13.2, is an illustration of a session with sdb. Commands in
bold are to be input explicitly; responses from sdb and com­
ments are in roman for clarity.

13-3

SDB

13-4

$ cat testdiv2.c
main(argc, argv, envp)
char ''""argv, nenvp; {

inti;
i = div2(-l);
printf(" -1/2 - %d\n", i);

div2(i) {

}

int j;
j=i>>l;
return(j);

$ cc -g testdtv2.c
$ a.out
-112- -1

Figure 13.1. Input File Used for SDB Example

$ sdb
No core image

•rctiv2
7: div2(i) {

•z
7: div2(i) {
8: intj;
9: j = i>>l;
10: return (j);
11: }

•div2:b
div2:9 b

•r

#Warning message from sdb

Search for function "div2"
It starts on line 7

Print the next few lines

Place breakpoint at beginning of "div2"
sdb echoes proc name and line number

#Run the function
a.out # sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j = i>>l;

•t # Print trace of subroutine calls
div2(i= -1) [testdiv2.c:9]
main(argc = 1 ,argv =Ox7fffff50,envp- Ox7ftlff58) ltestdiv2.c:4]

•1/ #Print i

SDB

-I

•s # Single step
div2:10: return(j);# Execution stops before line 10

#Print j

Delete the breakpoint •9d
*div2U)/ # Try running "div2" with different arguments
0

•div2(-2)/
-I

•div2{-3)/
-2

••
Figure 13.2. Example of SOB Usage

{ 2.1 Printing a Stack Trace

It is often useful to obtain a listing of the function calls which
led to the error. This is obtained with the t command. For
example:

•t
sub(x=2,y=3) [prgm.c:25]
inter(i= 16012) [prgm.c:96]
main (argc = 1 ,argv=Ox7fffff54,envp= Ox7fffff5c) (prgm.c: 15]

This indicates that the error occurred within the function sub at
line 25 in file prgm.c. The sub function was called with the
arguments x=2 and y=3 from inter at line 96. The inter
function was called from main at line 15. The main function is
always called by the shell with three arguments often referred

(to as argc, argv, and envp. Note that argv and envp are
pointers, so their values are printed in hexadecimal.

13-5

SDB

2.2 Examining Variables

The sdb program can be used to display variables in the stopped
program. Variables are displayed by typing their name followed
by a slash, so

•errOag/

causes sdb to display the value of variable errflag. Unless oth·
erwise specified, variables are assumed to be either local to or
accessible from the current function. To specify a different
function, use the form

•sub:i/

to display variable i in function sub. F77 users can specify a
common block variable in the same manner.

The sdb program supports a limited form of pattern matching
for variable and function names. The symbol • is used to
match any sequence of characters of a variable name and ? to
match any single character. Consider the following commands

•x .. /
•sub:y?/
••I

The first prints the values of all variables beginning with x, the
second prints the values of all two letter variables in function
sub beginning with y, and the last prints all variables. In the
first and last examples, only variables accessible from the
current function are printed. The command

displays the variables for each function en the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. To

13-6

SDB

request a different format, a specifier is placed after the slash.
The specifier consists of an optional length specification fol­
lowed by the format. The length specifiers are:

b

h

I

One byte

Two bytes (half word)

Four bytes (long word).

The lengths are effective only with the formats d, o, x, and u.
If no length is specified, the word length of the host machine is
used. A numeric length specifier may be used for the s or a
commands. These commands normally print characters until
either a null is reached or 128 characters are printed. The
number specifies how many characters should be printed.

There are a number of format specifiers available:

a Print characters starting at the variable's address
until a null is reached.

c Character.

d Decimal.

f 32-bit single-precision floating point.

1 64-bit double-precision floating point.

i Interpret as a machine-language instruction.

o Octal.

p Pointer to function.

s Assume variable is a string pointer and print charac­
ters starting at the address pointed to by the variable
until a null is reached.

u Decimal unsigned.

x Hexadecimal.

13-7

SDB

For example, the variable i can be displayed with

.. lfx

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and
pointers so that all of the following commands work.

•arrayl21131/
•sym.id/
•psym- >usage/
•xsym(20).p- >usage/

The only restriction is that array subscripts must be numbers.
Depending on your machine, accessing arrays may be limited to
l·dimensional arrays. Note that as a special case:

•psym->/d

displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

•1024/

displays location 1024 in decimal. As in C language, numbers
may also be specified in octal or hexadecimal so the above com­
mand is equivalent to both

•02000/

and

It is possible to mix numbers and variables so that

13-8

(

'

SDB

•IOOO.x/

refers to an element of a structure starting at address 1000, and

.. 1000->x/

refers to an element of a structure whose address is at 1000.
For commands of the type •lOOO.x/ and •1000->x/, the sdb
program uses the structure template of the last structured refer­
enced.

The address of a variable is printed with the =, so

displays the address of i. Another feature whose usefulness
will become apparent later is the command

~ •./

which redisplays the last variable typed.

3. Display and Manipulation

The sdb program has been designed to make it easy to debug a
program without constant reference to a current source listing.
Facilities are provided which perform context searches within
the source files of the program being debugged and to display
selected portions of the source files. The commands are similar
to those of the UniPius+ system text editor ed(l). Like the
editor, sdb has a notion of current file and line within the file.

The sdb program also knows how the lines of a file are parti­
tioned into functions, so it also has a notion of current func­
tion. As noted in other parts of this document, the current
function is used by a number of sdb commands.

13-9

SOB

3.1 Displaying the Source File

Four commands exist for displaying lines in the source file.
They are useful for perusing the source program and for deter­
mining the context of the current line. The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current
line .

.z Prints ten lines starting at the current line. Advances the
current line by ten.

CTRL-d Scrolls; prints the next ten lines and advances the
current line by ten. This command is used to cleanly
display long segments of the program.

When a line from a file is printed, it is preceded by its line
number. This not only gives an indication of its relative posi­
tion in the file but is also used as input by some sdb com­
mands.

3.2 Changing the Source File or Function

The e command is used to change the current source file.
Either of the following forms:

•e function
•e file.c

may be used. The first causes the file containing the named
function to become the current file, and the current line
becomes the first line of the function. The other form causes
the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an e command
with no argument causes the current function and file named to
be printed.

13-10

r'
'

SDB

3.3 Changing the Current Line in the Source File

The z and CTRL-D commands have a side effect of changing
the current line in the source file. The following paragraphs
describe other commands that change the current line.

There are two commands for searching for instances of regular
expressions in source files. They are

•/regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression and the
second searches backwards. The trailing I and ? may be omit­
ted from these commands. Regular expression matching is
identical to that ofed(l).

The + and - commands may be used to move the current line
forwards or backwards by a specified number of lines. Typing a
new-line advances the current line by one, and typing a number
causes that line to become the current line in the file. These
commands may be combined with the display commands so
that

•+15z

advances the current line by 15 and then prints ten lines.

4. A Controlled Testing Environment

One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be
specified to be breakpoints. The program is then started with a
sdb command. Execution of the program proceeds as normal
until it is about to execute one of the lines at which a break·
point has been set. The program stops and sdb reports the
breakpoint where the program stopped. Now, sdb commands
may be used to display the trace of function calls and the values

13-11

SOB

of variables. If the user is satisfied the program is working
correctly to this point, some breakpoints can be deleted and
others set; then program execution may be continued from the
point where it stopped.

A useful alternative to setting breakpoints is single stepping.
The sdb program can be requested to execute the next line of
the program and then stop. This feature is especially useful for
testing new programs, so they can be verified on a statement­
by-statement basis.

If an attempt is made to single step through a function which
has not been compiled with the -g option, execution proceeds
until a statement in a function compiled with the -g option is
reached. It is also possible to have the program execute one
machine level instruction at a time. This is particularly useful
when the program has not been compiled with the -g option.

4.1 Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains
executable code. The command format is:

•12b
•proc:12b
•proc:b
•b

The first form sets a breakpoint at line 12 in the current file.
The line numbers are relative to the beginning of the file as
printed by the source file display commands. The second form
sets a breakpoint at line 12 of function proc, and the third sets
a breakpoint at the first line of proc. The last sets a breakpoint
at the current line.

Breakpoints are deleted similarly with the commands

13-12

(
'

•12d
•proc:l2d
•proc:d

SDB

In addition, if the command d is given alone, the breakpoints
are deleted interactively. Each breakpoint location is printed,
and a line is read from the user. If the line begins with a y or
d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a 8
command, and the D command deletes all breakpoints. It is
sometimes desirable to have sdb automatically perform a
sequence of commands at a breakpoint and then have execution
continue. This is achieved with another form of the b comw
man d.

*12b t;x/

causes both a trace back and the value of x to be printed each
time execution gets to line 12. The a command is a variation
of the above command. There are two forms:

•proc:a
•proc:12a

The first prints the function name and its arguments each time
it is called, and the second prints the source line each time it is
about to be executed. For both forms of the a command, exe­
cution continues after the function name or source line is
printed.

4.2 Running the Program

The r command is used to begin program execution. It restarts
the program as if it were invoked from the shell. The com­
mand

*t args

13-13

SDB

runs the program with the given arguments as if they had been
typed on the shell command line. If no arguments are
specified, then the arguments from the last execution of the
program are used. To run a program with no arguments, use
the R command.

After the program is started, execution continues until a break­
point is encountered, a signal such as INTERRUPT or QUIT
occurs, or the program terminates. In all cases after an
appropriate message is printed, control returns to sdb.

The c command may be used to continue execution of a
stopped program. A line number may be specified, as in:

"'PfOC:t2c

This places a temporary breakpoint at the named line. The
breakpoint is deleted when the c command finishes. There is
also a c command which continues but passes the signal which
stopped the program back to the program. This is useful for
testing user-written signal handlers. Execution may be contin­
ued at a specified line with the g command. For example:

•17 g

continues at line 17 of the current function. A use for this
command is to avoid executing a section of code which is
known to be bad. The user should not attempt to continue
execution in a function different than that of the breakpoint.

The s command is used to run the program for a single line. It
is useful for slowly executing the program to examine its
behavior in detail. An important alternative is the S command.
This command is like the s command but does not stop within
called functions. It is often used when one is confident that the
called function works correctly but is interested in testing the
calling routine.

13-14

·•
·~

SDB

The i command is used to run the program one machine level
instruction at a time while ignoring the signal which stopped
the program. Its uses are similar to the s command. There is
also an I command which causes the program to execute one
machine level instruction at a time, but also passes the signal
which stopped the program back to the program.

4.3 Calling Functions

It is possible to call any of the functions of the program from
sdb. This feature is useful both for testing individual functions
with different arguments and for calling a function which prints
structured data in a nice way. There are two ways to call a
function:

•proc(argl, arg2, ...)
•prodargl, argl, .. .)/m

The first simply executes the function. The second is intended
for calling functions (it executes the function and prints the
value that it returns). The value is printed in decimal unless
some other format is specified by m. Arguments to functions
may be integer, character or string constants, or values of vari­
ables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a
function is called when the program is not stopped at a break­
point (such as when a core image is being debugged) all vari­
ables are initialized before the function is started. This makes
it impossible to use a function which formats data from a
dump.

5. Machine Language Debugging

The_ sdb program has facilities for examining programs at the
machine language level. It is possible to print the machine
language statements associated with a line in the source and to
place breakpoints at arbitrary addresses. The sdb program can
also be used to display or modify the contents of the machine
registers.

13-15

SDB

5.1 Displaying Machine Language Statements

To display the machine language statements associated with line
"25" in function "main," use the command

•main:25?

The ? command is identical to the I command except that it
displays from text space. The default format for printing text
space is the i format which interprets the machine language
instruction. The CTRL-d command may be used to print the
next ten instructions.

Absolute addresses may be specified instead of line numbers by
appending a : to them so that

•Ox1024:?

displays the contents of address Ox1024 in text space. Note
that the command

•Ox1024?

displays the instruction corresponding to line Ox1024 in the
current function. It is also possible to set or delete a break­
point by specifying its absolute address;

•Ox1024:b

sets a breakpoint at address Ox1024.

5.2 Manipulating Registers

The x command prints the values of all the registers. Also,
individual registers may be named instead of variables by
appending a % to their name so that

•r3Y.

13-16

SDB

displays the value of register r3.

5.3 Other Commands

To exit sdb, use the q command.

The ! command is identical to that in ed(l) and is used to
have the shell execute a command.

It is possible to change the values of variables when the pro·
gram is stopped at a breakpoint. This is done with the com­
mand

•variable!value

which sets the variable to the given value. The value may be a
number, character constant, register, or the name of another
variable. If the variable is of type float or double, the value can

r also be a floating-point constant.

13-17

r

r

Colophon

Composed at UniSoft Systems Inc.
on the UniPius+ Operating System
Designed by the Documentation Department
Printed in Times Roman on Sequoia Matt

