

ANSWERS TO SELECTED EXERCISES

c. -1
d. 4
e. -8
f. 2
g. 14
h. 1

Chapter6

1. a. The if statement's expression should be surrounded by parentheses.
b. We increment i inside the for loop's expression, then decrement it in the

body of the loop. This loop will never end!
c. The while loop has parentheses but is missing an expression.
d. The do statement should follow this format:

do
statement
while (expression) ;

e. Each case in this switch statement contains a text string, which is illegal.
Also, case default should read default.

f. The print£ ()will never get called.
g. This is probably the most common mistake made by C programmers. The

assignment operator(=) is used instead of the logical equality operator(==).
Since the assignment operator is perfectly legal inside an expression, the
compiler won't find this error, an annoying little error you'll encounter
again and again!

h. Once again, this code will compile, but it likely is not what you wanted. The
third expression in the for loop is usually an assignment statement-some­
thing to move i toward its terminating condition. The expression i * 2 0 is
useless here, since it doesn't change anything.

2. Look in the folder 06. 05 - nextPrime2.

3. Look in the folder 06. 06 - nextPrime3.

Chapter7

1. a. Final value is 25.
b. Final value is 512. Try changing the for loop from 2 to 3. Notice that this

generates a number too large for a 2-byte int to hold.
c. Final value is 1024.

2. Look in the folder 07. 06 - power2.

3. Look in the folder 07. 07 - nonPrimes.

461

APPENDIX F

462

Chapters ~~~~~~~~~~~~~~~~~~~~~~~~~

1. a. If the char type defaults to signed (very likely), c can hold values only
from -128 to 127. Even if your char does default to unsigned, this is dan­
gerous code. At the very least, use an unsigned char. Even better, use a
short, int, or long.

b. Use%£, %g, or %e to print the value of afloat, not %d.
c. The text string 11 a 11 is composed of two characters: ' a' and the terminating

zero byte. The variable c is only a single byte in size. Even if c were 2 bytes
long, you can't copy a text string this way. Try copying the text one byte at
a time into a variable large enough to hold the text string and its terminat­
ing zero byte.

d. Once again, this code uses the wrong approach to copying a text string, and
there is not enough memory allocated to hold the text string and its zero byte.

e. The #define of kMaxArraySize must come before the first non-#def ine
reference to it.

f. The following definition creates an array ranging from c [0] to
c[kMaxArraySize-1]:
char c[kMaxArraySize];

The reference to c [kMaxArraySize] is out of bounds.
g. The problem occurs in the line:

cPtr++ ::;; O;

This line assigns the pointer variable cPtr a value of 0 (making it point to lo­
cation 0 in memory), then increments it to 1 (making it point to location 1 in
memory). This code will not compile. Here's a more likely scenario:

*cPtr++ = O;

This code sets the char that cPtr points to to 0, then increments cPtr to
point to the next char in the array.

h. The problem here is with the statement:

c++;

You can't increment an array name. Even if you could, if you increment c,
you no longer have a pointer to the beginning of the array! A more proper
approach is to declare an extra char pointer, assign c to this char pointer,
then increment the copy of c, rather than c itself.

i. You don't need to terminate a #define with a semicolon. This statement
defines "kMaxArraySize" to "200; ",probably not what we had in mind.

2. Look in the folder 08. 08 - dice2.

3. Look in the folder 08. 09 - wordCount2.

ANSWERS TO SELECTED EXERCISES

Chapter9 ---~
1. a. The semicolon after employeeNumber is missing.

b. This code is really pretty useless. If the first character returned by
getchar () is ' \ n ', the ; will get executed; otherwise, the loop just exits.
Try changing the == to ! = and see what happens.

c. This code will work, since the double quotes around the header file name
tell the compiler to search the local directory in addition to the places it nor­
mally searches for system header files. On the other hand, it is considered
better form to place angle brackets around a system header file:
<stdio.h>.

d. The name field is missing its type. As it turns out, this code will compile, but
it might not do what you think it does. Since the type is missing, the C com­
piler assumes that you want an array of in ts. Even though it compiles, this
is bad form!

e. Both next and prev should be declared as pointers.
f. There are several problems with this code. First, the while loop is com­

pletely useless. Also, the code should use '\ 0' instead of 0 (although that's
really a question of style). Finally, by the time we get to the pr intf () ,
line points beyond the end of the string!

2. Look in the folder 09. 06 - dice2.

3. Look in the folder 09. 07 - cdTracker2.

4. Look in the folder 09. 08 - cdTracker3.

ChapterlO --
1. a. The arguments to fopen() appear in reverse order.

b. Once again, the arguments to f open () are reversed. In addition, the first
parameter to f scanf () contains a prompt, as if you were calling
print£ ().Also, the second parameter to fscanf () is defined as a char,
yet the %d format specifier is used, telling fscanf () to expect an int. This
will cause fscanf () to store a value of size int in the space allocated for
a char. Not good!

c. The line is declared as a char pointer instead of as an array of chars. No
memory was allocated for the string being read in by f scan£ () . Also, since
line is a pointer, the & in the fscanf () call shouldn't be there.

d. This code is fine except for one problem. The file is opened for writing, yet
we are trying to read from the file by using fscanf () .

2. Look in the folder 10. 04 - fileReader.

3. Look in the folder 10. 05 - cdFiler2.

463

APPENDIXF

464

Chapter11

1. a. In the next-to-last line, the address of myCat is cast to a struct. Instead,
the address should be cast to a (struct Dog *).

b. The typedef defines FuncPtr to be a pointer to a function that returns an
int. MyFunc () is declared to return a pointer to an int, not an int.

c. The declaration of Number is missing the keyword union. Here's the cor­
rected declaration:

union Number myUnion;

d. The Player union fields must be accessed using u. Instead of myPlayer .my Int,
refer to myPlayer.u.myint. Instead of myPlayer.my:Float, refer to
myPlayer.u.myFloat.

e. First off, myFuncPtr is not a function pointer and not a legal I-value. As is,
the declaration just declares a function named myFuncPtr. This declaration
fixes that problem:

int (*myFuncPtr)(int);

Next, main () doesn't take a single int as a parameter. Besides that, calling
main () yourself is a questionable practice. Finally, to call the function pointed
to by myFuncPtr, use either myFuncPtr () ; or (*myFuncPtr) () ; instead
of *myFuncPtr () ; .

f. The function strcmp () returns zero if the strings are equal. The if would
fail if the strings were the same. The message passed to pr intf () is
wrong.

g. The parameters passed to strcpy () should be reversed.
h. No memory was allocated for s. When strcpy() copies the string, it will

be writing over unintended memory.
i. This is a common problem that tons of people, including battle-scarred vet­

erans, run into. The function call in the loop is not a function call. Instead,
the address of the function DoSomeStuff is evaluated. Because this ad­
dress is not assigned to anything or used in any other way, the result of the
evaluation is discarded. The expression "DoSomeStuf f;" is effectively a
no-op, making the entire loop a no-op.

2. Look in the folder 11. 05 - treePrinter.

-----------Appendix G
Bibliography

1. The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, 1988,
Prentice Hall, Englewood Cliffs, NJ.

2. C: A Reference Manual, Fourth Edition, Samuel Harbison, 1994, Prentice Hall,
Englewood Cliffs, NJ.

3. Macintosh C Programming Primer, Volume I.1 Second Edition, Dave Mark and
Cartwright Reed, 1992, Addison-Wesley Publishing Company, Reading, MA.

4. Macintosh C Programming Primer, Volume II, Dave Mark, 1990, Addison-Wesley
Publishing Company, Reading, MA.

5. Danny Goodman's AppleScript Handbook, Second Edition, Danny Goodman,
1995, Alfred A. Knopf, New York, NY.

6. Macintosh Human Interface Guidelines, Apple Computer, Inc., 1992, Addison­
Wesley Publishing Company, Reading, MA.

7. Inside Macintosh: PowerPC System Software, Apple Computer Inc., 1994,
Addison-Wesley Publishing Company, Reading, MA.

8. Algorithms in C, Robert Sedgewick, 1990, Addison-Wesley Publishing
Company, Reading, MA.

9. Data Structures and C Programs, Second Edition, Christopher J. Van Wyk, 1990,
Addison-Wesley Publishing Company, Reading, MA.

10. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Second
Edition, Donald E. Knuth, 1973, Addison-Wesley Publishing Company,
Reading, MA.

11. Learn C++ on the Macintosh, Dave Mark, 1993, Addison-Wesley Publishing
Company, Reading, MA.

465

APPENDIXG

466

12. The Art of Computer Programming, Volume 3: Sorting and Searching, Donald E.
Knuth, 1973, Addison-Wesley Publishing Company, Reading, MA.

13. Inside Macintosh: Macintosh Toolbox Essentials, Second Edition, Apple
Computer, Inc., 1992, Addison-Wesley Publishing Company, Reading, MA.

14. Inside Macintosh: More Macintosh Toolbox, Second Edition, Apple Computer,
Inc., 1993, Addison-Wesley Publishing Company, Reading, MA.

15. Macintosh Programming Secrets, Second Edition, Scott Knaster, 1992, Addison­
Wesley Publishing Company, Reading, MA.

-----------------------------Index
! = operator, 81, 82-83
% operator, 104, 106
& (address of) operator, 118, 305, 306
&& (and) operator, 83-84, 85
&=operator, 305, 306
* operator, 56-57, 118, 119-20, 121
*= operator, 56-57
*/, 73
+ operator, 54
++operator, 54
+= operator, 55-56
, operator, 307-8
- operator, 54
-- operator, 54
-=operator, 55-56
->operator, 219
• operator, 218
I operator, 56-57
/*, 73
I= operator, 56-57
: operator, 307-8
:, 26, 27, 89-90
< operator, 81
<"" operator, 81
<< operator, 306-7
<<"" operator, 306-7
= (assignment) operator, 50
== operator, 81
> operator, 81
>= operator, 81
>> operator, 306-7
>>= operator, 306-7
? operator, 307-8
\ \, 70
\ ", 70
\0, 204-5
\ t (single tab character), 70
"operator, 305, 306
{} (curly braces), 26, 88-89
I operator, 305, 306
I I (or) operator, 84-85
- operator, 305, 306
68000 emulator, 22

680x0
data alignment rules on, 214-17
machine language instructions, 22

80486 machine language instructions, 22

\a, 70-71
Algorithms, 26-28

defined, 105
Alignment rules, data, 214-17
American National Standards Institute (ANSI),

29
America Online, 324
AND,305
and operator, 83-84, 85
ANSIC,29
Append mode, 245
AppleScript, 14-15
Application, fat, 23
Arguments. See Parameter(s)
Arithmetic, pointer, 192
Array(s), 168-76, 197-209

dimensions of, 169
elements of, 169
for loop to initialize, 170
index, 169
memory and, 205-6, 208-9, 223
multidimensional, 198-99
out of bounds reference to, 176, 206
pointers and, 174-75
reasons for using, 170
sample program, 170-76
of struct, 222

ascii.µ project, 163--68
ASCII character set, 162-68

printable, 164-66
unprintable, 166, 167

Assignment operator, 50
Assignment statement, 79

\b, 70
Backslash combinations, 69-71
Backward compatibility, 22
Balanced tree, 297

467

INDEX

468

Beep, generating a, 70-71
Bell curve (normal probability distribution), 171
Binary, fat, 23
Binary notation, 49
Binary operators, 83
Binary representation, 47
Binary trees, 293-301

balanced, 297
recursion and, 298-301
searching,297-98

Bit bucket, 208
Bits,47-49

clearing, 305
shifting, 306

Block,88
Boundaries, array, 176, 206
Bounds checking, 206
break, 101, 103
Buffer, input, 179-80
Buttons, 319
Bytes, 47-49

files as stream of, 243, 268
padding,214,215

C++, 15
commentingconvention,74

case, 100-101
Case sensitivity, 39
Cast. See Typecasting
Cast, variable, 80
cdfiler .µproject, 253-66
cdtracker. µ project, 230-41
Central processing unit (CPU), 21
char, 159, 162-83

arrays, 168-76
ASCII character set, 162-68
text strings, 177-83

Child of a node, 293
C language, 1-6

alternatives to, 14-15
equipment required, 3
prerequisite for learning, 2-3
reasons for learning, 2

Clearing a bit, 305
Closing files, 244-46
Code optimization, 96
CodeWarrior, 4, 7-12, 321

installing, 7-9
PowerPC native version of, 217
testing, 10-12

Coding habits, 71
Colon character (:), 244
Comparative operators, 81
Comparative relationship, 294
Compatibility, backward, 22
Compiling, 17-21
Compound expressions, 85-86
Compound statements, 90
CompuServe, 324
Conditional expression, 307
Consoles, 61
Console window, 35, 62, 77
const, 244
Constant(s)

define and, 185
FALSE,82
FOPEN_ MAX, 246
hex,221
numerical, 50
string,177
TRUE,82

Control Manager, 319
Conventions, 46
Counter variables, 92
CPU,21
ctype.h, 188

%d format specifier, 64, 179
Data alignment rules, 214-17
Data files, layout of, 254
Data structures, 5, 197-242

arrays and, 197-209
memory and, 208-9

linked lists, 227-41, 293
creating, 229-30
doubly linked lists, 229
reasons for using, 228
sample program, 230-41
traversing, 229
typecasting and, 284

memory management and, 223-27
struct and, 209-14

array of, 222
data alignment rules and, 214-17
FILE,245
passing as parameter, 217-19
passing copy of, 219-21
root, 293

Data types, 4, 45, 151-96
enumerated,309-10

floating-point, 152-58
integer, 159-62

char, 159, 162-83
long, 159, 214
memory allocated for, 159-60
short, 159, 214

memory efficiency versus safety in selecting,
161-62

programmer-created, 308-9
unions, 285-89
wide-string, 163

Deallocation of memory, 128
Declaration

enum, 309-10
of functions (function prototype), 33
of pointers, 119-22
struct, 209-10
of variables, 45, 50-51, 62-63

errors in, 51-52
as unsigned, 49

default case, 101
Default initialization value, 303
define, 183-94

constants and, 185
functionlike macros, 186-88
location in source code, 184-85, 186
namingconventions,185
sample program, 188-94
unions and, 286-87

Dereferencing pointer, 121-22
dice.µ project, 170-76
Dictionary, 183
Dimensions, array, 169
dinoEdi t. µ project, 269-77
Disk files, 5
Division

floating-point, 57
by zero, 87

do,99-100
double, 152, 156

memory allocated for, 155
Double linked lists, 229

%e format specifier, 158
EBCDIC character set, 163
Elements, array, 169
Enumerated data types, 309-10
enum statement, 309-10
EOF, 191
Error handling, 273

Errors
in functions, 36-39, 40
syntax, 26-28
in variable declaration, 51-52

Excel, 15
Exponential (scientific) notation, 158
Expressions, 79-81

compound, 85-86
conditional, 307
true, 80-81

extern, 257-58

%£format specifier, 155
FALSE constant, 80, 82
Fat binary (fat application), 23
£close(),246
feof (), 248
£flush(), 241, 267
fgetc () , 246-47
£gets (), 247-48
Fields, 210
File modes, 245
File-naming conventions, 244
FILE pointers, 246, 251
File position, 245, 247
Files, 243-79

closing, 244-46
defined, 243
include (header), 211-12, 258
layout of, 254
opening, 243-46
random access, 268-77

functions allowing, 268-69
sample program, 269-77

reading, 244, 246-51
sample programs, 249-51, 253-54
as stream of bytes, 243, 268
"update" modes, 267-68
'Writing,244,252-66

FILE struct, 245
Find command, 18
float, 152, 155
Floating-point division, 57
Floating-point types, 152-58

storage of, 156
floatSizer. µ project, 152-58
Flow control, 4, 77-111

break statement, 101, 103
comparative operators and, 81
compound expressions and, 85-86

INDEX

469

INDEX

470

Flow control (continued)
curly braces and, 88-89
defined, 77
do statement, 99-100
expressions and, 79-81
for statement, 93-100, 170
if statement, 77-79, 87, 307
logical operators and, 82-85
sample programs, 104-10
statements and, 86-88
switch statement, 100-103
while statement, 90-93, 94, 96, 103

fopen(), 244-46
FOPEN_MAX constant, 246
for,93-100

to initialize arrays, 170
Force quit button, 161
Format specifiers, 64, 155-57

square brackets inside, 265
fprintf () , 244, 252-53
fputc () , 252
fputs () , 252
Fractional numbers. See Floating-point types
fread () , 275
free(), 227
fscanf () , 244, 265-66
fseek(), 267, 268-69, 274
fsetpos (), 267
ftell () , 268-69, 273-74
Function(s), 4, 25-41, 77

calling,28-29
case-sensitivity and, 39
defined,25
errors in, 36-39, 40
function definition, 26
ISO C and Standard Library, 29-30
pointers to, 301-3
statements embedded in, 67
syntax errors and algorithms, 26-28
variable names distinguished from, 25

Function names, 73
Function prototype (function declaration), 33
Function recursion, 289-93
Function return values, 131, 134-39

passed-by-address parameters versus, 138-39
uninitialized, 137-38

Function specifier, 26, 33

%g format specifier, 158
getchar(), 191
gets () , 201, 203
Global variables, 63, 131-34, 146-47

Graphical user interface (GUI), 317

Header (include) files, 211-12, 258
Hexadecimal notation, 221
HyperCard, 14
HyperTalk, 14

if, 77-79, 87
if-else,78-79,307
include,32
Include (header) files, 211-12, 258
Index, array, 169
Infinite loops, 93
Initializers, 303-5
Initializing variables, 63, 303-5
Inordersearch,299-300
Input, keyboard, 179-80
Input buffer, 179-80
int

memory allocated for, 117
size of, 46-47

Integer data types, 159-62
char, 159, 162-83
long, 159, 214
memory allocated for, 159-60
short, 159, 214
unsigned, 48

Intel, 21
International Standards organization (ISO), 29
intSizer program, 159
ISOC,29-30
isOdd. c (flow control sample program), 104-6
isspace(), 188
iswhi te () , 189
Iteration, 289-90

Key,298
Keyboard input, 179-80

Languages,progranuning,13
Leaf node, 293
Learn C Projects folder, 9
Library, 17
License agreement, 8
Linked lists, 227-41, 293

creating, 229-30
doubly linked lists, 229
reasons for using, 228
sample program, 230-41
traversing, 229
typecasting and, 284

Linking,17

listPr imes. µ project, 139-42
Lists, linked. See Linked lists
Literals, 50

as expressions, 80
Loacling,20
Localizing programs, 163
Local variables, 128, 219
Logical operators, 82-85
lonq, 159, 214
lonq double, 152, 155, 156
Loops

break statements in, 101, 103
for, 93-100, 170
infinite, 93
while,90-93,94,96,103

L-value,50

Machine language, 17
Macintosh Toolbox, 317-22
Macros, 183. See also define
main (), 28-29, 43
malloc () , 225-26, 227
Master pointer, 228
Memory

arrays and, 208-9
data type selection and, 161-62
deallocation of, 128
global variables and, 134
program readability and, 172
random-access (RAM), 116
read-only (ROM), 318
text strings in, 177

Memory allocation
for arrays, 205-6, 223
for integers, 159-60

Memory management, 223-27
free(), 227
malloc () , 225-26, 227

Menu Manager, 318
Metrowerks, 322
Modes, file, 245
Motorola, 21, 22
mul tiArray. µ project, 200-208
Multidimensional arrays, 198-99

\n,31, 180
name.µ project, 178-83
Names

function, 73
variable, 45-46, 73

Native mode programs, 23
Nested statements, 88

nextPr ime. rr (flow control sample program),
107-10

Nodes on binary trees, 293
Normal probability distribution (bell curve), 171
NULL,203

pointer with, 225
Numerical constants, 50

Object code, 17, 19, 21-23
On-line services, 324
Openingfiles,243-46
Operator(s), 4, 50-75, 77, 305-8

1 =, 81, 82-83
%, 104, 106
& (address of), 118, 305, 306
& & (and), 83-84, 85
&=,305,306
*,56-57, 118,119-20, 121
*=,56-57
+,54
++,54
+=, 55-56
,, 307-8
-,54
--,54
-=,55-56
->,218
.,218
/,56-57
/=,56-57
:, 307-8
<,81
<=,81
<<,306-7
«=,306-7
=,50
==,81
>,81
>=,81
»,306-7
>>=,306-7
?,307-8
",305,306
l,305,306
I I (or), 84-85
-,305,306
assignment, 50
backslash combinations, 69-71
binary, 83
comparative, 81
logical, 82-85
postfix, 67

INDEX

471

INDEX

472

Operator(s) (continued)
precedence of, 57-59
prefix, 68
unary,83

Optintization,code,96
OR,305
or,84-85
Out of bounds array reference, 176, 206
Outpu~program,61

Padding bytes, 214, 215
paramAddress folder, 220
Paratneter(s), 63, 122-31

operation of, 125-26
passed by address, 129, 138-39
passing struct as, 217-19
pointers and, 128-31
temporary nature of, 126-28
variable scope and, 1~24

Paratneter list, 26
Parentheses, 73

in define tnacros, 186-87
operator order and, 57

Pascal, 15
Pentium, 21
Pointer(s), 4, 111, 113-22. See also Parameter(s)

& operator and, 118
arrays and, 174-75
declaring, 119-22
defined, 113
dereferencing, 121-22
FILE, 246, 251
file position, 247
function, 301-3
function parameters and, 128-31
invalid, 203
master,228
with NULL value, 225
reasons for using, 113-15
typecasting with, 283-84
as variable addresses, 116-18
void,225

Pointer arithmetic, 192
Portability, 30
Postfix notation, 54-55, 66-68
Postfix operator, 67
Postorder search, 300-301
power.µ project, 143-47
PowerPC, 21-23

data aligrunent rules on, 214-17
Prefix notation, 54-55, 66

Prefix operators, 68
Preordersearch,299
Preprocess command, 185
Prime numbers, 107
printf (), 30, 77

format specifier modifiers with, 155-57
printFile.µ project, 249-51
Processor, 21
Programming, 13-23

process of, 16-21
reasons for, 13

Programntlnglanguages,13
Program output, 61
Programs

native mode, 23
scriptable, 14

Project file, 10
Project window, 10-11
Prompt, 179
Prototype, function, 33
Push buttons, 319
putchar(), 250-51

Quoted text string, 63-64

\r,69-70
Radio buttons, 319
Random-access memory (RAM), 116
Random file access, 268-77

functions allowing, 268-69
sample progratn, 269-77

Random-number generator, 172-73
Range (scope) of variable, 1~24
Reading files, 244, 246-51
Read-only memory (ROM), 318
Rebuilding desktop, 10
Recursion

binary trees and, 298-301
function, 289-93

return, 33, 135, 136
Return type, 26
Return values, function, 131, 134-39

passed-by-address parameters versus, 138-39
uninitialized, 137-38

rewind () , 267, 268-69
Root node, 293

%s,182
scanf () , 178-82, 265
Scientific (exponential) notation, 158
Scope of variable, 1~24

Scriptable programs, 14
Scroll bars, 319
Searching binary trees, 297-98
Semicolon, 26, 27

placement of, 89-90
Shifting bits, 306
short, 159, 214
Signed bytes, 49
Simple statements, 89
sizeof, 154
Sound options, 70
Source code, 11

compiling, 17-21
location of define in, 184-85, 186
writing, 16-17

Source code window, 10, 11
Squaring a number, 130
srand(), 172-73
Stack, HyperCard, 14
Standard Library, 5, 29-30, 77, 314

Macintosh Toolbox implementation of, 317-22
memory management functions in, 225-27

Statements, 26. See also specific statements and
keywords

assignment, 79
block of, 88
compound, 90
embedded in functions, 67
flow control and, 86-88
nested, 88
simple,89

static, 310-11
Static variables, 310-12
stderr,251
stdin,251
stdout,251
strcat(), 312-13
strchr(), 236
strcmp(),313
strcpy () , 312
Stream of bytes, 243
String(s), 177-83

in memory, 177
quoted, 63-64
reading with scanf () , 179
zero-length, 205
0-terminated, 177, 179, 182, 193

string. h, 271
String constant, 177
String manipulation, 312-14
strlen(), 183, 271, 276, 313-14

struct, 209-14
array of, 222
data alignment rules and, 214-17
FILE,245
linked list of, 227-41
passing as parameter, 217-19
passing copy of, 219-21
root,293

structSize.µ project, 210-14
switch, 100-103
Symantec C++ for Macintosh, 321-22
Syntax, 5, 29-30
Syntax errors, 26-28

Tech blocks, 6
Temporary variable, 126
Terminal node, 293
Text strings. See String(s)
to lower () , 165
Toolbox Assistant (TBA), 323
toupper () , 165
Trees, binary, 293-301

balanced, 297
recursion and, 298-301
searchhig,297-98

TRUE constant, 82
True expressions, 80-81
Truthtables,82,85
Two's complement notation, 48-49
Type, size of, 46-47
Typecasting,154,281-84

care in using, 282-83
defined, 281-82
with pointers, 283-84

typedef statement, 308-9
typeOverflow.µ project, 161
Types. See Data types
Typos,27

Unary operators, 83
Underscore, 46
Uninitialized variables, 63
Unions, 285-89

define to keep track of state of, 286-87
reasonsforusing,287-89

Unsigned bytes, 49
Unsigned integers, 48
User interface, graphical (GUI), 317

Variable(s), 4, 43-50, 77. See also Pointer(s)
assigning values to, 50-53

INDEX

473

INDEX

474

Variable(s) (continued)
counters, 92
declaring, 45, 50-51, 62-63

errors in, 51-52
as unsigned, 49

defined,43
defining a, 62-63
global, 63, 131-34, 146-47
initializing, 63, 303-5
limitations of, 176
local, 128, 219
memory allocated to, 118
scope of, 123-24
static, 310-12
temporary, 126
type of, 45, 46-47 (see also Data types)
uninitialized, 63
working with, 45

Variable cast, 80
Variable names, 45-46, 73

function names distinguished from, 25
void, 80, 135
void pointer, 225

while, 90-93, 94, 96
break statements in, 103

White space, 71-73, 181
in define macros, 187

Whole numbers. See Integer data types
Wide-string data types, 163
windowMaker. µproject, 319-20
Window Manager, 319
wordCount. µ project, 188-94
Writing files, 244, 252-66

XOR,305

Zero, division by, 87
Zero-length string, 205
0-Terminated string, 177, 179, 182, 193

t

Addison-Wesley warrants the enclosed disc to be free of defects in materials and faulty
workmanship under normal use for a period of ninety days after purchase. If a defect is dis­
covered in the disc during the warranty period, a replacement disc can be obtained at no
charge by sending the defective disc, postage prepaid, with proof of purchase to:

Addison-Wesley Publishing Company
Editorial Department
Trade Computer Books Division
One Jacob Way
Reading, MA 01867

After the ninety-day period, a replacement will be sent upon receipt of the defective disc
and a check or money order for $10.00, payable to Addison-Wesley Publishing Company.

Addison-Wesley makes no warranty or representation, either express or implied, with
respect to this software, its quality, performance, merchantability, or fitness for a particular
purpose. In no event will Addison-Wesley, its distributors, or dealers be liable for direct, in­
direct, special, incidental, or consequential damages arising out of the use or inability to use
the software. The exclusion of implied warranties is not permitted in some states. Therefore,
the above exclusion may not apply to you. This warranty provides you with specific legal
rights. There may be other rights that you may have that vary from state to state.

Software License

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFTWARE. BY
USING THE SOFIWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE RETURN THE
SOFIWARE TO THE PLACE WHERE YOU OBTAINED IT AND YOUR MONEY WILL BE
REFUNDED.

1. License: The application, demonstration, system, and other software accompanying this
License, whether on disc, in read-only memory, or on any other media (the "Software") the
related documentation, and fonts are licensed to you by Metrowerks. You own the disc on
which the Software and fonts are recorded but Metrowerks and/ or Metrowerks' Licensor
retain title to the Software, related documentation, and fonts. This License allows you to use
the Software and fonts on a single Apple computer. You may use a copy of the software on
a home or portable computer, as long as the extra copy is never loaded at the same time the
software is loaded on the primary computer on which you use the Software.

You may make one copy of the Software and fonts in machine-readable form for
backup purposes. You must reproduce on such copy the Metrowerks copyright notice and
any other proprietary legends that were on the original copy of the Software and fonts. You
may also transfer all your license rights in the Software and fonts, the backup copy of the
Software and fonts, the related documentation, and a copy of this License to another party,
provided the other party reads and agrees to accept the terms and conditions of this
License.

2. Restrictions: The Software contains copyrighted material, trade secrets, and other propri­
etary material. In order to protect them, and except as permitted by applicable legislation,
you may not decompile, reverse engineer, disassemble, or otherwise reduce the Software to
a human-perceivable form. You may not modify, network, rent, lease, loan, distribute, or
create derivative works based upon the Software in whole or in part. You may not electron­
ically transmit the Software from one computer to another or over a network. If the
Software was licensed to you for academic use, you may not use the Software for commer­
cial product development.

3. Software Redistribution: The following list describes the Software and Materials that li­
censees of Code Warrior may incorporate into their own programs and distribute (in object
code form only), solely with their own programs, pursuant to the terms of the CodeWarrior
Software License as part of a linked binary:

All libraries in ":Metrowerks C/C++ f:Libraries f"
All libraries in ":Metrowerks Pascal f:Libraries f"
All libraries in ":Metrowerks MPW Tools f:MWPPCLibraries" folder
All libraries in ":Metrowerks MPW Tools f:MW68KLibraries" folder

The following list describes the Software and Materials that licensees of CodeWarrior may
incorporate into their own programs and distribute (in object code form only), solely with
their own programs, pursuant to the terms of the CodeWarrior Software License:

ColorSync system extension, ColorSync System Profile control panel, and related
profiles

Macintosh Drag and Drop, Dragging Enabler, and Clipping Extension system ex­
tensions

PowerTalk Extension and PowerTalk Manager extensions
QuickTrme, QuickTime Power Plug, and QuickTrme Musical Instruments system

extensions
Speech Manager system extension
StdCLiblnit system extension
Thread Manager system extension
AppleScriptLib and ObjectSupportLib shared libraries
DragLib shared library
MathLib shared library
XTND Interface and XTND Power Enabler shared libraries

In order to protect Metrowerks and Metrowerks' Licensors intellectual property rights in
the Software and Materials herein, you must reproduce on each copy a copyright notice that
clearly states "Copyright© by Metrowerks and its Licensors,"and distribute such Software
and Materials pursuant to a valid agreement that is at least as protective of Metrowerks and
Metrowerks' Licensors rights in the Software and Materials as this License.

4. Termination: This License is effective until terminated. You may terminate this License at
any time by destroying the Software, related documentation, and fonts and all copies
thereof. This License will terminate immediately without notice from Metrowerks if you fail
to comply with any provision of this License. Upon termination you must destroy the
Software, related documentation, and fonts, and all copies thereof.

5. Export Law Assurances: You agree and certify that neither the Software nor any other
technical data received from Metrowerks, nor the direct product thereof, will be exported
outside the United States except as authorized and as permitted by the laws and regulations
of the United States. If the Software has been rightfully obtained by you outside of the
United States, you agree that you will not re-export the Software nor any other technical
data received from Metrowerks, nor the direct product thereof, except as permitted by the
laws and regulations of the United States and the laws and regulations of the jurisdiction in
which you obtained the Software.

6. Government End Users: If you are acquiring the Software and fonts on behalf of any unit
or agency of the United States Government, the following provisions apply. The
Government agrees: (i) if the Software and fonts are supplied to the Department of Defense
(DoD), the Software and fonts are classified as "Commercial Computer Software" and the
Government is acquiring only "restricted rights" in the Software, its documentation, and
fonts as that term is defined in Clause 252.227-7013(c)(l) of the DFARS; and (ii) if the
Software and fonts are supplied to any unit or agency of the United States Government
other than DoD, the Government's rights in the Software, its documentation and fonts will
be as defined in Clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in Clause 18-
52.227-86(d) of the NASA Supplement to the FAR.

7. Limited Warranty on Media: Metrowerks warrants the diskettes and/ or compact disc on
which the Software and fonts are recorded to be free from defects in materials and work­
manship under normal use for a period of ninety (90) days from the date of purchase as ev­
idenced by a copy of the receipt. Metrowerks' entire liability and your exclusive remedy
will be replacement of the diskettes and/ or compact disc not meeting Metrowerks' limited
warranty and which is returned to Metrowerks or a Metrowerks authorized representative
with a copy of the receipt. Metrowerks will have no responsibility to replace a disk/ disc
damaged by accident, abuse, or misapplication. ANY IMPLIED WARRANTIES ON THE
DISKETTES AND /OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY. THIS WARRANTY
GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY BY JURISDICTION.

8. Disclaimer of Warranty on Metrowerks Software: You expressly acknowledge and agree
that use of the Software and fonts is at your sole risk. Except as is stated above, the
Software, related documentation, and fonts are provided "AS IS" and without warranty of
any kind and Metrowerks and Metrowerks' Llcensor(s) (for the purposes of provisions 8
and 9, Metrowerks and Metrowerks' Llcensor(s) shall be collectively referred to as
"Metrowerks") EXPRESSLY DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR IM­
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER­
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. METROWERKS DOES
NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL
MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL
BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SOFTWARE AND
THE FONTs WILL BE CORRECTED. FURTHERMORE, METROWERKS DOES NOT WAR­
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS

OF THE USE OF THE SOFTWARE AND FONTS OR RELATED DOCUMENTATION IN
TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY METROWERKS OR A
METROWERKS AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR
IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE SOFTWARE
PROVE DEFECTIVE, YOU (AND NOT METROWERKS OR A METROWERKS AUTHO­
RIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVIC­
ING, REPAIR, OR CORRECTION. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU.

9. Limitation of Liability: UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE,
SHALL METROWERKS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, OR CONSE­
QUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY TO USE THE
SOFTWARE OR RELATE DOCUMENTATION, EVEN IF METROWERKS OR A
METROWERKS AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POS­
SIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITA­
TION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

In no event shall Metrowerks' total liability to you for all damages, losses, and causes
of action (whether in contract, tort [including negligence] or otherwise) exceed that portion
of the amount paid by you which is fairly attributable to the Software and fonts.

10. Controlling Law and Severability: This License shall be governed by and construed in
accordance with the laws of the United States and the State of California, .. as applied to
agreements entered into and to be performed entirely within California between California
residents. If for any reason a court of competent jurisdiction finds any provision of this
License, or portion thereof, to be unenforceable, that provision of the License shall be en­
forced to the maximum extent permissible so as to effect the intent of the parties, and the re­
mainder of this License shall continue in full force and effect.

11. Complete Agreement: This License constitutes the entire agreement between the parties
with respect to the use of the Software, the related documentation, and fonts, and super­
sedes all prior or contemporaneous understandings or agreements, written or oral, regard­
ing such subject matter. No amendment to or modification of this License will be binding
unless in writing and signed by a duly authorized representative of Metrowerks.

Should you have any questions or comments concerning this license, please do not hes­
itate to call Metrowerks, (514) 747-5999, or to write to 1500 du College, suite 300, St-Laurent
QC H4L SG6 Canada. Attention: Warranty Information.

.\ladntosh/<: l'rog1~1mmi11g

IF YOU CAN USE A MACINTOSH, YOU CAN PROG INC.

tT you sick of pushing paper in a joh that 's taking you nowhere. except

A to the copy machint·? Did you enjoy BASIC as a kid, hut fed kft behind

by the programming world? Do you want to spend your span: Lime on

your compulL'I" doing something more productive than wandering the mazes of

Doom? Expnt .\tacintosh · programmer Dan· i\.lark offL'rs yo u solutions in this

completdy rL'\ 'iSL'd edition or his hL'Stsdling lear11 c Oil /be 1Uad11/os/J . With

this sell'-teaching . easy-to-utHkrstand hook and L·ndosed CD-RO.\'\ , you get evcry­

th ing you m:L'd to start programming in !his \\'iddy usL'd language.

New features of this edition of Learn C 011 the Maci11tosb include:

• updated and enhanced exercises that lead you step by step through
programmi11g fundamentals and C language basics , including
functions, variables, pointe rs, data types, data structures, and file input
and output- the author makes even the most difficult C programming
concepts easy to understand w ith his clear, fri e ndly w riting style

• completely rewritten code, p lus answers and source code for aU of
the exercises

• a CD-ROM with Metrowerks CodeWarrio r '" Lite, a special version of
one of the ho ttest Macintosh programming environments (includi ng a
native PowerPC version). The CD also includes a slew of games,
shareware, de mos, and o ther neat stuff for inspiration.

9 80201 484069
ISBN 0-20 J -48406-4

$34.95 us
$48.00

